mirror of
https://github.com/pineappleEA/pineapple-src.git
synced 2024-12-11 09:58:24 -05:00
941 lines
19 KiB
C
Executable File
941 lines
19 KiB
C
Executable File
/* $OpenBSD: bn_lib.c,v 1.47 2019/06/17 17:11:48 tb Exp $ */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
|
|
#ifndef BN_DEBUG
|
|
# undef NDEBUG /* avoid conflicting definitions */
|
|
# define NDEBUG
|
|
#endif
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/opensslconf.h>
|
|
|
|
#include <openssl/err.h>
|
|
|
|
#include "bn_lcl.h"
|
|
|
|
/* This stuff appears to be completely unused, so is deprecated */
|
|
#ifndef OPENSSL_NO_DEPRECATED
|
|
/* For a 32 bit machine
|
|
* 2 - 4 == 128
|
|
* 3 - 8 == 256
|
|
* 4 - 16 == 512
|
|
* 5 - 32 == 1024
|
|
* 6 - 64 == 2048
|
|
* 7 - 128 == 4096
|
|
* 8 - 256 == 8192
|
|
*/
|
|
static int bn_limit_bits = 0;
|
|
static int bn_limit_num = 8; /* (1<<bn_limit_bits) */
|
|
static int bn_limit_bits_low = 0;
|
|
static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */
|
|
static int bn_limit_bits_high = 0;
|
|
static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */
|
|
static int bn_limit_bits_mont = 0;
|
|
static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */
|
|
|
|
void
|
|
BN_set_params(int mult, int high, int low, int mont)
|
|
{
|
|
if (mult >= 0) {
|
|
if (mult > (int)(sizeof(int) * 8) - 1)
|
|
mult = sizeof(int) * 8 - 1;
|
|
bn_limit_bits = mult;
|
|
bn_limit_num = 1 << mult;
|
|
}
|
|
if (high >= 0) {
|
|
if (high > (int)(sizeof(int) * 8) - 1)
|
|
high = sizeof(int) * 8 - 1;
|
|
bn_limit_bits_high = high;
|
|
bn_limit_num_high = 1 << high;
|
|
}
|
|
if (low >= 0) {
|
|
if (low > (int)(sizeof(int) * 8) - 1)
|
|
low = sizeof(int) * 8 - 1;
|
|
bn_limit_bits_low = low;
|
|
bn_limit_num_low = 1 << low;
|
|
}
|
|
if (mont >= 0) {
|
|
if (mont > (int)(sizeof(int) * 8) - 1)
|
|
mont = sizeof(int) * 8 - 1;
|
|
bn_limit_bits_mont = mont;
|
|
bn_limit_num_mont = 1 << mont;
|
|
}
|
|
}
|
|
|
|
int
|
|
BN_get_params(int which)
|
|
{
|
|
if (which == 0)
|
|
return (bn_limit_bits);
|
|
else if (which == 1)
|
|
return (bn_limit_bits_high);
|
|
else if (which == 2)
|
|
return (bn_limit_bits_low);
|
|
else if (which == 3)
|
|
return (bn_limit_bits_mont);
|
|
else
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
const BIGNUM *
|
|
BN_value_one(void)
|
|
{
|
|
static const BN_ULONG data_one = 1L;
|
|
static const BIGNUM const_one = {
|
|
(BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA
|
|
};
|
|
|
|
return (&const_one);
|
|
}
|
|
|
|
int
|
|
BN_num_bits_word(BN_ULONG l)
|
|
{
|
|
BN_ULONG x, mask;
|
|
int bits;
|
|
unsigned int shift;
|
|
|
|
/* Constant time calculation of floor(log2(l)) + 1. */
|
|
bits = (l != 0);
|
|
shift = BN_BITS4; /* On _LP64 this is 32, otherwise 16. */
|
|
do {
|
|
x = l >> shift;
|
|
/* If x is 0, set mask to 0, otherwise set it to all 1s. */
|
|
mask = ((~x & (x - 1)) >> (BN_BITS2 - 1)) - 1;
|
|
bits += shift & mask;
|
|
/* If x is 0, leave l alone, otherwise set l = x. */
|
|
l ^= (x ^ l) & mask;
|
|
} while ((shift /= 2) != 0);
|
|
|
|
return bits;
|
|
}
|
|
|
|
int
|
|
BN_num_bits(const BIGNUM *a)
|
|
{
|
|
int i = a->top - 1;
|
|
|
|
bn_check_top(a);
|
|
|
|
if (BN_is_zero(a))
|
|
return 0;
|
|
return ((i * BN_BITS2) + BN_num_bits_word(a->d[i]));
|
|
}
|
|
|
|
void
|
|
BN_clear_free(BIGNUM *a)
|
|
{
|
|
int i;
|
|
|
|
if (a == NULL)
|
|
return;
|
|
bn_check_top(a);
|
|
if (a->d != NULL && !(BN_get_flags(a, BN_FLG_STATIC_DATA)))
|
|
freezero(a->d, a->dmax * sizeof(a->d[0]));
|
|
i = BN_get_flags(a, BN_FLG_MALLOCED);
|
|
explicit_bzero(a, sizeof(BIGNUM));
|
|
if (i)
|
|
free(a);
|
|
}
|
|
|
|
void
|
|
BN_free(BIGNUM *a)
|
|
{
|
|
BN_clear_free(a);
|
|
}
|
|
|
|
void
|
|
BN_init(BIGNUM *a)
|
|
{
|
|
memset(a, 0, sizeof(BIGNUM));
|
|
bn_check_top(a);
|
|
}
|
|
|
|
BIGNUM *
|
|
BN_new(void)
|
|
{
|
|
BIGNUM *ret;
|
|
|
|
if ((ret = malloc(sizeof(BIGNUM))) == NULL) {
|
|
BNerror(ERR_R_MALLOC_FAILURE);
|
|
return (NULL);
|
|
}
|
|
ret->flags = BN_FLG_MALLOCED;
|
|
ret->top = 0;
|
|
ret->neg = 0;
|
|
ret->dmax = 0;
|
|
ret->d = NULL;
|
|
bn_check_top(ret);
|
|
return (ret);
|
|
}
|
|
|
|
/* This is used both by bn_expand2() and bn_dup_expand() */
|
|
/* The caller MUST check that words > b->dmax before calling this */
|
|
static BN_ULONG *
|
|
bn_expand_internal(const BIGNUM *b, int words)
|
|
{
|
|
BN_ULONG *A, *a = NULL;
|
|
const BN_ULONG *B;
|
|
int i;
|
|
|
|
bn_check_top(b);
|
|
|
|
if (words > (INT_MAX/(4*BN_BITS2))) {
|
|
BNerror(BN_R_BIGNUM_TOO_LONG);
|
|
return NULL;
|
|
}
|
|
if (BN_get_flags(b, BN_FLG_STATIC_DATA)) {
|
|
BNerror(BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
|
|
return (NULL);
|
|
}
|
|
a = A = reallocarray(NULL, words, sizeof(BN_ULONG));
|
|
if (A == NULL) {
|
|
BNerror(ERR_R_MALLOC_FAILURE);
|
|
return (NULL);
|
|
}
|
|
#if 1
|
|
B = b->d;
|
|
/* Check if the previous number needs to be copied */
|
|
if (B != NULL) {
|
|
for (i = b->top >> 2; i > 0; i--, A += 4, B += 4) {
|
|
/*
|
|
* The fact that the loop is unrolled
|
|
* 4-wise is a tribute to Intel. It's
|
|
* the one that doesn't have enough
|
|
* registers to accommodate more data.
|
|
* I'd unroll it 8-wise otherwise:-)
|
|
*
|
|
* <appro@fy.chalmers.se>
|
|
*/
|
|
BN_ULONG a0, a1, a2, a3;
|
|
a0 = B[0];
|
|
a1 = B[1];
|
|
a2 = B[2];
|
|
a3 = B[3];
|
|
A[0] = a0;
|
|
A[1] = a1;
|
|
A[2] = a2;
|
|
A[3] = a3;
|
|
}
|
|
switch (b->top & 3) {
|
|
case 3:
|
|
A[2] = B[2];
|
|
case 2:
|
|
A[1] = B[1];
|
|
case 1:
|
|
A[0] = B[0];
|
|
}
|
|
}
|
|
|
|
#else
|
|
memset(A, 0, sizeof(BN_ULONG) * words);
|
|
memcpy(A, b->d, sizeof(b->d[0]) * b->top);
|
|
#endif
|
|
|
|
return (a);
|
|
}
|
|
|
|
/* This is an internal function that can be used instead of bn_expand2()
|
|
* when there is a need to copy BIGNUMs instead of only expanding the
|
|
* data part, while still expanding them.
|
|
* Especially useful when needing to expand BIGNUMs that are declared
|
|
* 'const' and should therefore not be changed.
|
|
* The reason to use this instead of a BN_dup() followed by a bn_expand2()
|
|
* is memory allocation overhead. A BN_dup() followed by a bn_expand2()
|
|
* will allocate new memory for the BIGNUM data twice, and free it once,
|
|
* while bn_dup_expand() makes sure allocation is made only once.
|
|
*/
|
|
|
|
#ifndef OPENSSL_NO_DEPRECATED
|
|
BIGNUM *
|
|
bn_dup_expand(const BIGNUM *b, int words)
|
|
{
|
|
BIGNUM *r = NULL;
|
|
|
|
bn_check_top(b);
|
|
|
|
/* This function does not work if
|
|
* words <= b->dmax && top < words
|
|
* because BN_dup() does not preserve 'dmax'!
|
|
* (But bn_dup_expand() is not used anywhere yet.)
|
|
*/
|
|
|
|
if (words > b->dmax) {
|
|
BN_ULONG *a = bn_expand_internal(b, words);
|
|
|
|
if (a) {
|
|
r = BN_new();
|
|
if (r) {
|
|
r->top = b->top;
|
|
r->dmax = words;
|
|
r->neg = b->neg;
|
|
r->d = a;
|
|
} else {
|
|
/* r == NULL, BN_new failure */
|
|
free(a);
|
|
}
|
|
}
|
|
/* If a == NULL, there was an error in allocation in
|
|
bn_expand_internal(), and NULL should be returned */
|
|
} else {
|
|
r = BN_dup(b);
|
|
}
|
|
|
|
bn_check_top(r);
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
/* This is an internal function that should not be used in applications.
|
|
* It ensures that 'b' has enough room for a 'words' word number
|
|
* and initialises any unused part of b->d with leading zeros.
|
|
* It is mostly used by the various BIGNUM routines. If there is an error,
|
|
* NULL is returned. If not, 'b' is returned. */
|
|
|
|
BIGNUM *
|
|
bn_expand2(BIGNUM *b, int words)
|
|
{
|
|
bn_check_top(b);
|
|
|
|
if (words > b->dmax) {
|
|
BN_ULONG *a = bn_expand_internal(b, words);
|
|
if (!a)
|
|
return NULL;
|
|
if (b->d)
|
|
freezero(b->d, b->dmax * sizeof(b->d[0]));
|
|
b->d = a;
|
|
b->dmax = words;
|
|
}
|
|
|
|
/* None of this should be necessary because of what b->top means! */
|
|
#if 0
|
|
/* NB: bn_wexpand() calls this only if the BIGNUM really has to grow */
|
|
if (b->top < b->dmax) {
|
|
int i;
|
|
BN_ULONG *A = &(b->d[b->top]);
|
|
for (i = (b->dmax - b->top) >> 3; i > 0; i--, A += 8) {
|
|
A[0] = 0;
|
|
A[1] = 0;
|
|
A[2] = 0;
|
|
A[3] = 0;
|
|
A[4] = 0;
|
|
A[5] = 0;
|
|
A[6] = 0;
|
|
A[7] = 0;
|
|
}
|
|
for (i = (b->dmax - b->top)&7; i > 0; i--, A++)
|
|
A[0] = 0;
|
|
assert(A == &(b->d[b->dmax]));
|
|
}
|
|
#endif
|
|
bn_check_top(b);
|
|
return b;
|
|
}
|
|
|
|
BIGNUM *
|
|
BN_dup(const BIGNUM *a)
|
|
{
|
|
BIGNUM *t;
|
|
|
|
if (a == NULL)
|
|
return NULL;
|
|
bn_check_top(a);
|
|
|
|
t = BN_new();
|
|
if (t == NULL)
|
|
return NULL;
|
|
if (!BN_copy(t, a)) {
|
|
BN_free(t);
|
|
return NULL;
|
|
}
|
|
bn_check_top(t);
|
|
return t;
|
|
}
|
|
|
|
BIGNUM *
|
|
BN_copy(BIGNUM *a, const BIGNUM *b)
|
|
{
|
|
int i;
|
|
BN_ULONG *A;
|
|
const BN_ULONG *B;
|
|
|
|
bn_check_top(b);
|
|
|
|
if (a == b)
|
|
return (a);
|
|
if (bn_wexpand(a, b->top) == NULL)
|
|
return (NULL);
|
|
|
|
#if 1
|
|
A = a->d;
|
|
B = b->d;
|
|
for (i = b->top >> 2; i > 0; i--, A += 4, B += 4) {
|
|
BN_ULONG a0, a1, a2, a3;
|
|
a0 = B[0];
|
|
a1 = B[1];
|
|
a2 = B[2];
|
|
a3 = B[3];
|
|
A[0] = a0;
|
|
A[1] = a1;
|
|
A[2] = a2;
|
|
A[3] = a3;
|
|
}
|
|
switch (b->top & 3) {
|
|
case 3:
|
|
A[2] = B[2];
|
|
case 2:
|
|
A[1] = B[1];
|
|
case 1:
|
|
A[0] = B[0];
|
|
}
|
|
#else
|
|
memcpy(a->d, b->d, sizeof(b->d[0]) * b->top);
|
|
#endif
|
|
|
|
a->top = b->top;
|
|
a->neg = b->neg;
|
|
bn_check_top(a);
|
|
return (a);
|
|
}
|
|
|
|
void
|
|
BN_swap(BIGNUM *a, BIGNUM *b)
|
|
{
|
|
int flags_old_a, flags_old_b;
|
|
BN_ULONG *tmp_d;
|
|
int tmp_top, tmp_dmax, tmp_neg;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
|
|
flags_old_a = a->flags;
|
|
flags_old_b = b->flags;
|
|
|
|
tmp_d = a->d;
|
|
tmp_top = a->top;
|
|
tmp_dmax = a->dmax;
|
|
tmp_neg = a->neg;
|
|
|
|
a->d = b->d;
|
|
a->top = b->top;
|
|
a->dmax = b->dmax;
|
|
a->neg = b->neg;
|
|
|
|
b->d = tmp_d;
|
|
b->top = tmp_top;
|
|
b->dmax = tmp_dmax;
|
|
b->neg = tmp_neg;
|
|
|
|
a->flags = (flags_old_a & BN_FLG_MALLOCED) |
|
|
(flags_old_b & BN_FLG_STATIC_DATA);
|
|
b->flags = (flags_old_b & BN_FLG_MALLOCED) |
|
|
(flags_old_a & BN_FLG_STATIC_DATA);
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
}
|
|
|
|
void
|
|
BN_clear(BIGNUM *a)
|
|
{
|
|
bn_check_top(a);
|
|
if (a->d != NULL)
|
|
explicit_bzero(a->d, a->dmax * sizeof(a->d[0]));
|
|
a->top = 0;
|
|
a->neg = 0;
|
|
}
|
|
|
|
BN_ULONG
|
|
BN_get_word(const BIGNUM *a)
|
|
{
|
|
if (a->top > 1)
|
|
return BN_MASK2;
|
|
else if (a->top == 1)
|
|
return a->d[0];
|
|
/* a->top == 0 */
|
|
return 0;
|
|
}
|
|
|
|
BIGNUM *
|
|
bn_expand(BIGNUM *a, int bits)
|
|
{
|
|
if (bits > (INT_MAX - BN_BITS2 + 1))
|
|
return (NULL);
|
|
|
|
if (((bits + BN_BITS2 - 1) / BN_BITS2) <= a->dmax)
|
|
return (a);
|
|
|
|
return bn_expand2(a, (bits + BN_BITS2 - 1) / BN_BITS2);
|
|
}
|
|
|
|
int
|
|
BN_set_word(BIGNUM *a, BN_ULONG w)
|
|
{
|
|
bn_check_top(a);
|
|
if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL)
|
|
return (0);
|
|
a->neg = 0;
|
|
a->d[0] = w;
|
|
a->top = (w ? 1 : 0);
|
|
bn_check_top(a);
|
|
return (1);
|
|
}
|
|
|
|
BIGNUM *
|
|
BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
|
|
{
|
|
unsigned int i, m;
|
|
unsigned int n;
|
|
BN_ULONG l;
|
|
BIGNUM *bn = NULL;
|
|
|
|
if (len < 0)
|
|
return (NULL);
|
|
if (ret == NULL)
|
|
ret = bn = BN_new();
|
|
if (ret == NULL)
|
|
return (NULL);
|
|
bn_check_top(ret);
|
|
l = 0;
|
|
n = len;
|
|
if (n == 0) {
|
|
ret->top = 0;
|
|
return (ret);
|
|
}
|
|
i = ((n - 1) / BN_BYTES) + 1;
|
|
m = ((n - 1) % (BN_BYTES));
|
|
if (bn_wexpand(ret, (int)i) == NULL) {
|
|
BN_free(bn);
|
|
return NULL;
|
|
}
|
|
ret->top = i;
|
|
ret->neg = 0;
|
|
while (n--) {
|
|
l = (l << 8L) | *(s++);
|
|
if (m-- == 0) {
|
|
ret->d[--i] = l;
|
|
l = 0;
|
|
m = BN_BYTES - 1;
|
|
}
|
|
}
|
|
/* need to call this due to clear byte at top if avoiding
|
|
* having the top bit set (-ve number) */
|
|
bn_correct_top(ret);
|
|
return (ret);
|
|
}
|
|
|
|
/* ignore negative */
|
|
int
|
|
BN_bn2bin(const BIGNUM *a, unsigned char *to)
|
|
{
|
|
int n, i;
|
|
BN_ULONG l;
|
|
|
|
bn_check_top(a);
|
|
n = i=BN_num_bytes(a);
|
|
while (i--) {
|
|
l = a->d[i / BN_BYTES];
|
|
*(to++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
|
|
}
|
|
return (n);
|
|
}
|
|
|
|
int
|
|
BN_ucmp(const BIGNUM *a, const BIGNUM *b)
|
|
{
|
|
int i;
|
|
BN_ULONG t1, t2, *ap, *bp;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
|
|
i = a->top - b->top;
|
|
if (i != 0)
|
|
return (i);
|
|
ap = a->d;
|
|
bp = b->d;
|
|
for (i = a->top - 1; i >= 0; i--) {
|
|
t1 = ap[i];
|
|
t2 = bp[i];
|
|
if (t1 != t2)
|
|
return ((t1 > t2) ? 1 : -1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
BN_cmp(const BIGNUM *a, const BIGNUM *b)
|
|
{
|
|
int i;
|
|
int gt, lt;
|
|
BN_ULONG t1, t2;
|
|
|
|
if ((a == NULL) || (b == NULL)) {
|
|
if (a != NULL)
|
|
return (-1);
|
|
else if (b != NULL)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
|
|
if (a->neg != b->neg) {
|
|
if (a->neg)
|
|
return (-1);
|
|
else
|
|
return (1);
|
|
}
|
|
if (a->neg == 0) {
|
|
gt = 1;
|
|
lt = -1;
|
|
} else {
|
|
gt = -1;
|
|
lt = 1;
|
|
}
|
|
|
|
if (a->top > b->top)
|
|
return (gt);
|
|
if (a->top < b->top)
|
|
return (lt);
|
|
for (i = a->top - 1; i >= 0; i--) {
|
|
t1 = a->d[i];
|
|
t2 = b->d[i];
|
|
if (t1 > t2)
|
|
return (gt);
|
|
if (t1 < t2)
|
|
return (lt);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
BN_set_bit(BIGNUM *a, int n)
|
|
{
|
|
int i, j, k;
|
|
|
|
if (n < 0)
|
|
return 0;
|
|
|
|
i = n / BN_BITS2;
|
|
j = n % BN_BITS2;
|
|
if (a->top <= i) {
|
|
if (bn_wexpand(a, i + 1) == NULL)
|
|
return (0);
|
|
for (k = a->top; k < i + 1; k++)
|
|
a->d[k] = 0;
|
|
a->top = i + 1;
|
|
}
|
|
|
|
a->d[i] |= (((BN_ULONG)1) << j);
|
|
bn_check_top(a);
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
BN_clear_bit(BIGNUM *a, int n)
|
|
{
|
|
int i, j;
|
|
|
|
bn_check_top(a);
|
|
if (n < 0)
|
|
return 0;
|
|
|
|
i = n / BN_BITS2;
|
|
j = n % BN_BITS2;
|
|
if (a->top <= i)
|
|
return (0);
|
|
|
|
a->d[i] &= (~(((BN_ULONG)1) << j));
|
|
bn_correct_top(a);
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
BN_is_bit_set(const BIGNUM *a, int n)
|
|
{
|
|
int i, j;
|
|
|
|
bn_check_top(a);
|
|
if (n < 0)
|
|
return 0;
|
|
i = n / BN_BITS2;
|
|
j = n % BN_BITS2;
|
|
if (a->top <= i)
|
|
return 0;
|
|
return (int)(((a->d[i]) >> j) & ((BN_ULONG)1));
|
|
}
|
|
|
|
int
|
|
BN_mask_bits(BIGNUM *a, int n)
|
|
{
|
|
int b, w;
|
|
|
|
bn_check_top(a);
|
|
if (n < 0)
|
|
return 0;
|
|
|
|
w = n / BN_BITS2;
|
|
b = n % BN_BITS2;
|
|
if (w >= a->top)
|
|
return 0;
|
|
if (b == 0)
|
|
a->top = w;
|
|
else {
|
|
a->top = w + 1;
|
|
a->d[w] &= ~(BN_MASK2 << b);
|
|
}
|
|
bn_correct_top(a);
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
BN_set_negative(BIGNUM *a, int b)
|
|
{
|
|
if (b && !BN_is_zero(a))
|
|
a->neg = 1;
|
|
else
|
|
a->neg = 0;
|
|
}
|
|
|
|
int
|
|
bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n)
|
|
{
|
|
int i;
|
|
BN_ULONG aa, bb;
|
|
|
|
aa = a[n - 1];
|
|
bb = b[n - 1];
|
|
if (aa != bb)
|
|
return ((aa > bb) ? 1 : -1);
|
|
for (i = n - 2; i >= 0; i--) {
|
|
aa = a[i];
|
|
bb = b[i];
|
|
if (aa != bb)
|
|
return ((aa > bb) ? 1 : -1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* Here follows a specialised variants of bn_cmp_words(). It has the
|
|
property of performing the operation on arrays of different sizes.
|
|
The sizes of those arrays is expressed through cl, which is the
|
|
common length ( basicall, min(len(a),len(b)) ), and dl, which is the
|
|
delta between the two lengths, calculated as len(a)-len(b).
|
|
All lengths are the number of BN_ULONGs... */
|
|
|
|
int
|
|
bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl)
|
|
{
|
|
int n, i;
|
|
|
|
n = cl - 1;
|
|
|
|
if (dl < 0) {
|
|
for (i = dl; i < 0; i++) {
|
|
if (b[n - i] != 0)
|
|
return -1; /* a < b */
|
|
}
|
|
}
|
|
if (dl > 0) {
|
|
for (i = dl; i > 0; i--) {
|
|
if (a[n + i] != 0)
|
|
return 1; /* a > b */
|
|
}
|
|
}
|
|
return bn_cmp_words(a, b, cl);
|
|
}
|
|
|
|
/*
|
|
* Constant-time conditional swap of a and b.
|
|
* a and b are swapped if condition is not 0.
|
|
* The code assumes that at most one bit of condition is set.
|
|
* nwords is the number of words to swap.
|
|
* The code assumes that at least nwords are allocated in both a and b,
|
|
* and that no more than nwords are used by either a or b.
|
|
* a and b cannot be the same number
|
|
*/
|
|
void
|
|
BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
|
|
{
|
|
BN_ULONG t;
|
|
int i;
|
|
|
|
bn_wcheck_size(a, nwords);
|
|
bn_wcheck_size(b, nwords);
|
|
|
|
assert(a != b);
|
|
assert((condition & (condition - 1)) == 0);
|
|
assert(sizeof(BN_ULONG) >= sizeof(int));
|
|
|
|
condition = ((condition - 1) >> (BN_BITS2 - 1)) - 1;
|
|
|
|
t = (a->top^b->top) & condition;
|
|
a->top ^= t;
|
|
b->top ^= t;
|
|
|
|
#define BN_CONSTTIME_SWAP(ind) \
|
|
do { \
|
|
t = (a->d[ind] ^ b->d[ind]) & condition; \
|
|
a->d[ind] ^= t; \
|
|
b->d[ind] ^= t; \
|
|
} while (0)
|
|
|
|
|
|
switch (nwords) {
|
|
default:
|
|
for (i = 10; i < nwords; i++)
|
|
BN_CONSTTIME_SWAP(i);
|
|
/* Fallthrough */
|
|
case 10: BN_CONSTTIME_SWAP(9); /* Fallthrough */
|
|
case 9: BN_CONSTTIME_SWAP(8); /* Fallthrough */
|
|
case 8: BN_CONSTTIME_SWAP(7); /* Fallthrough */
|
|
case 7: BN_CONSTTIME_SWAP(6); /* Fallthrough */
|
|
case 6: BN_CONSTTIME_SWAP(5); /* Fallthrough */
|
|
case 5: BN_CONSTTIME_SWAP(4); /* Fallthrough */
|
|
case 4: BN_CONSTTIME_SWAP(3); /* Fallthrough */
|
|
case 3: BN_CONSTTIME_SWAP(2); /* Fallthrough */
|
|
case 2: BN_CONSTTIME_SWAP(1); /* Fallthrough */
|
|
case 1:
|
|
BN_CONSTTIME_SWAP(0);
|
|
}
|
|
#undef BN_CONSTTIME_SWAP
|
|
}
|
|
|
|
/*
|
|
* Constant-time conditional swap of a and b.
|
|
* a and b are swapped if condition is not 0.
|
|
* nwords is the number of words to swap.
|
|
*/
|
|
int
|
|
BN_swap_ct(BN_ULONG condition, BIGNUM *a, BIGNUM *b, size_t nwords)
|
|
{
|
|
BN_ULONG t;
|
|
int i, words;
|
|
|
|
if (a == b)
|
|
return 1;
|
|
if (nwords > INT_MAX)
|
|
return 0;
|
|
words = (int)nwords;
|
|
if (bn_wexpand(a, words) == NULL || bn_wexpand(b, words) == NULL)
|
|
return 0;
|
|
if (a->top > words || b->top > words) {
|
|
BNerror(BN_R_INVALID_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
/* Set condition to 0 (if it was zero) or all 1s otherwise. */
|
|
condition = ((~condition & (condition - 1)) >> (BN_BITS2 - 1)) - 1;
|
|
|
|
/* swap top field */
|
|
t = (a->top ^ b->top) & condition;
|
|
a->top ^= t;
|
|
b->top ^= t;
|
|
|
|
/* swap neg field */
|
|
t = (a->neg ^ b->neg) & condition;
|
|
a->neg ^= t;
|
|
b->neg ^= t;
|
|
|
|
/* swap BN_FLG_CONSTTIME from flag field */
|
|
t = ((a->flags ^ b->flags) & BN_FLG_CONSTTIME) & condition;
|
|
a->flags ^= t;
|
|
b->flags ^= t;
|
|
|
|
/* swap the data */
|
|
for (i = 0; i < words; i++) {
|
|
t = (a->d[i] ^ b->d[i]) & condition;
|
|
a->d[i] ^= t;
|
|
b->d[i] ^= t;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
BN_GENCB *
|
|
BN_GENCB_new(void)
|
|
{
|
|
BN_GENCB *cb;
|
|
|
|
if ((cb = calloc(1, sizeof(*cb))) == NULL)
|
|
return NULL;
|
|
|
|
return cb;
|
|
}
|
|
|
|
void
|
|
BN_GENCB_free(BN_GENCB *cb)
|
|
{
|
|
if (cb == NULL)
|
|
return;
|
|
free(cb);
|
|
}
|
|
|
|
void *
|
|
BN_GENCB_get_arg(BN_GENCB *cb)
|
|
{
|
|
return cb->arg;
|
|
}
|