pineapple-src/externals/libressl/tls/tls_signer.c
2022-04-24 22:29:35 +02:00

452 lines
10 KiB
C
Executable File

/* $OpenBSD: tls_signer.c,v 1.4 2022/02/01 17:18:38 jsing Exp $ */
/*
* Copyright (c) 2021 Eric Faurot <eric@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <limits.h>
#include <openssl/ecdsa.h>
#include <openssl/err.h>
#include <openssl/rsa.h>
#include "tls.h"
#include "tls_internal.h"
struct tls_signer_key {
char *hash;
RSA *rsa;
EC_KEY *ecdsa;
struct tls_signer_key *next;
};
struct tls_signer {
struct tls_error error;
struct tls_signer_key *keys;
};
static pthread_mutex_t signer_method_lock = PTHREAD_MUTEX_INITIALIZER;
struct tls_signer *
tls_signer_new(void)
{
struct tls_signer *signer;
if ((signer = calloc(1, sizeof(*signer))) == NULL)
return (NULL);
return (signer);
}
void
tls_signer_free(struct tls_signer *signer)
{
struct tls_signer_key *skey;
if (signer == NULL)
return;
tls_error_clear(&signer->error);
while (signer->keys) {
skey = signer->keys;
signer->keys = skey->next;
RSA_free(skey->rsa);
EC_KEY_free(skey->ecdsa);
free(skey->hash);
free(skey);
}
free(signer);
}
const char *
tls_signer_error(struct tls_signer *signer)
{
return (signer->error.msg);
}
int
tls_signer_add_keypair_mem(struct tls_signer *signer, const uint8_t *cert,
size_t cert_len, const uint8_t *key, size_t key_len)
{
struct tls_signer_key *skey = NULL;
char *errstr = "unknown";
int ssl_err;
EVP_PKEY *pkey = NULL;
X509 *x509 = NULL;
BIO *bio = NULL;
char *hash = NULL;
/* Compute certificate hash */
if ((bio = BIO_new_mem_buf(cert, cert_len)) == NULL) {
tls_error_setx(&signer->error,
"failed to create certificate bio");
goto err;
}
if ((x509 = PEM_read_bio_X509(bio, NULL, tls_password_cb,
NULL)) == NULL) {
if ((ssl_err = ERR_peek_error()) != 0)
errstr = ERR_error_string(ssl_err, NULL);
tls_error_setx(&signer->error, "failed to load certificate: %s",
errstr);
goto err;
}
if (tls_cert_pubkey_hash(x509, &hash) == -1) {
tls_error_setx(&signer->error,
"failed to get certificate hash");
goto err;
}
X509_free(x509);
x509 = NULL;
BIO_free(bio);
bio = NULL;
/* Read private key */
if ((bio = BIO_new_mem_buf(key, key_len)) == NULL) {
tls_error_setx(&signer->error, "failed to create key bio");
goto err;
}
if ((pkey = PEM_read_bio_PrivateKey(bio, NULL, tls_password_cb,
NULL)) == NULL) {
tls_error_setx(&signer->error, "failed to read private key");
goto err;
}
if ((skey = calloc(1, sizeof(*skey))) == NULL) {
tls_error_set(&signer->error, "failed to create key entry");
goto err;
}
skey->hash = hash;
if ((skey->rsa = EVP_PKEY_get1_RSA(pkey)) == NULL &&
(skey->ecdsa = EVP_PKEY_get1_EC_KEY(pkey)) == NULL) {
tls_error_setx(&signer->error, "unknown key type");
goto err;
}
skey->next = signer->keys;
signer->keys = skey;
EVP_PKEY_free(pkey);
BIO_free(bio);
return (0);
err:
EVP_PKEY_free(pkey);
X509_free(x509);
BIO_free(bio);
free(hash);
free(skey);
return (-1);
}
int
tls_signer_add_keypair_file(struct tls_signer *signer, const char *cert_file,
const char *key_file)
{
char *cert = NULL, *key = NULL;
size_t cert_len, key_len;
int rv = -1;
if (tls_config_load_file(&signer->error, "certificate", cert_file,
&cert, &cert_len) == -1)
goto err;
if (tls_config_load_file(&signer->error, "key", key_file, &key,
&key_len) == -1)
goto err;
rv = tls_signer_add_keypair_mem(signer, cert, cert_len, key, key_len);
err:
free(cert);
free(key);
return (rv);
}
static int
tls_sign_rsa(struct tls_signer *signer, struct tls_signer_key *skey,
const uint8_t *input, size_t input_len, int padding_type,
uint8_t **out_signature, size_t *out_signature_len)
{
int rsa_padding, rsa_size, signature_len;
char *signature = NULL;
*out_signature = NULL;
*out_signature_len = 0;
if (padding_type == TLS_PADDING_NONE) {
rsa_padding = RSA_NO_PADDING;
} else if (padding_type == TLS_PADDING_RSA_PKCS1) {
rsa_padding = RSA_PKCS1_PADDING;
} else if (padding_type == TLS_PADDING_RSA_X9_31) {
rsa_padding = RSA_X931_PADDING;
} else {
tls_error_setx(&signer->error, "invalid RSA padding type (%d)",
padding_type);
return (-1);
}
if (input_len > INT_MAX) {
tls_error_setx(&signer->error, "input too large");
return (-1);
}
if ((rsa_size = RSA_size(skey->rsa)) <= 0) {
tls_error_setx(&signer->error, "invalid RSA size: %d",
rsa_size);
return (-1);
}
if ((signature = calloc(1, rsa_size)) == NULL) {
tls_error_set(&signer->error, "RSA signature");
return (-1);
}
if ((signature_len = RSA_private_encrypt((int)input_len, input,
signature, skey->rsa, rsa_padding)) <= 0) {
/* XXX - include further details from libcrypto. */
tls_error_setx(&signer->error, "RSA signing failed");
free(signature);
return (-1);
}
*out_signature = signature;
*out_signature_len = (size_t)signature_len;
return (0);
}
static int
tls_sign_ecdsa(struct tls_signer *signer, struct tls_signer_key *skey,
const uint8_t *input, size_t input_len, int padding_type,
uint8_t **out_signature, size_t *out_signature_len)
{
unsigned char *signature;
int signature_len;
*out_signature = NULL;
*out_signature_len = 0;
if (padding_type != TLS_PADDING_NONE) {
tls_error_setx(&signer->error, "invalid ECDSA padding");
return (-1);
}
if (input_len > INT_MAX) {
tls_error_setx(&signer->error, "digest too large");
return (-1);
}
if ((signature_len = ECDSA_size(skey->ecdsa)) <= 0) {
tls_error_setx(&signer->error, "invalid ECDSA size: %d",
signature_len);
return (-1);
}
if ((signature = calloc(1, signature_len)) == NULL) {
tls_error_set(&signer->error, "ECDSA signature");
return (-1);
}
if (!ECDSA_sign(0, input, input_len, signature, &signature_len,
skey->ecdsa)) {
/* XXX - include further details from libcrypto. */
tls_error_setx(&signer->error, "ECDSA signing failed");
free(signature);
return (-1);
}
*out_signature = signature;
*out_signature_len = signature_len;
return (0);
}
int
tls_signer_sign(struct tls_signer *signer, const char *pubkey_hash,
const uint8_t *input, size_t input_len, int padding_type,
uint8_t **out_signature, size_t *out_signature_len)
{
struct tls_signer_key *skey;
*out_signature = NULL;
*out_signature_len = 0;
for (skey = signer->keys; skey; skey = skey->next)
if (!strcmp(pubkey_hash, skey->hash))
break;
if (skey == NULL) {
tls_error_setx(&signer->error, "key not found");
return (-1);
}
if (skey->rsa != NULL)
return tls_sign_rsa(signer, skey, input, input_len,
padding_type, out_signature, out_signature_len);
if (skey->ecdsa != NULL)
return tls_sign_ecdsa(signer, skey, input, input_len,
padding_type, out_signature, out_signature_len);
tls_error_setx(&signer->error, "unknown key type");
return (-1);
}
static int
tls_rsa_priv_enc(int from_len, const unsigned char *from, unsigned char *to,
RSA *rsa, int rsa_padding)
{
struct tls_config *config;
uint8_t *signature = NULL;
size_t signature_len = 0;
const char *pubkey_hash;
int padding_type;
/*
* This function is called via RSA_private_encrypt() and has to conform
* to its calling convention/signature. The caller is required to
* provide a 'to' buffer of at least RSA_size() bytes.
*/
pubkey_hash = RSA_get_ex_data(rsa, 0);
config = RSA_get_ex_data(rsa, 1);
if (pubkey_hash == NULL || config == NULL)
goto err;
if (rsa_padding == RSA_NO_PADDING) {
padding_type = TLS_PADDING_NONE;
} else if (rsa_padding == RSA_PKCS1_PADDING) {
padding_type = TLS_PADDING_RSA_PKCS1;
} else if (rsa_padding == RSA_X931_PADDING) {
padding_type = TLS_PADDING_RSA_X9_31;
} else {
goto err;
}
if (from_len < 0)
goto err;
if (config->sign_cb(config->sign_cb_arg, pubkey_hash, from, from_len,
padding_type, &signature, &signature_len) == -1)
goto err;
if (signature_len > INT_MAX || (int)signature_len > RSA_size(rsa))
goto err;
memcpy(to, signature, signature_len);
free(signature);
return ((int)signature_len);
err:
free(signature);
return (-1);
}
RSA_METHOD *
tls_signer_rsa_method(void)
{
static RSA_METHOD *rsa_method = NULL;
pthread_mutex_lock(&signer_method_lock);
if (rsa_method != NULL)
goto out;
rsa_method = RSA_meth_new("libtls RSA method", 0);
if (rsa_method == NULL)
goto out;
RSA_meth_set_priv_enc(rsa_method, tls_rsa_priv_enc);
out:
pthread_mutex_unlock(&signer_method_lock);
return (rsa_method);
}
static ECDSA_SIG *
tls_ecdsa_do_sign(const unsigned char *dgst, int dgst_len, const BIGNUM *inv,
const BIGNUM *rp, EC_KEY *eckey)
{
struct tls_config *config;
ECDSA_SIG *ecdsa_sig = NULL;
uint8_t *signature = NULL;
size_t signature_len = 0;
const unsigned char *p;
const char *pubkey_hash;
/*
* This function is called via ECDSA_do_sign_ex() and has to conform
* to its calling convention/signature.
*/
pubkey_hash = ECDSA_get_ex_data(eckey, 0);
config = ECDSA_get_ex_data(eckey, 1);
if (pubkey_hash == NULL || config == NULL)
goto err;
if (dgst_len < 0)
goto err;
if (config->sign_cb(config->sign_cb_arg, pubkey_hash, dgst, dgst_len,
TLS_PADDING_NONE, &signature, &signature_len) == -1)
goto err;
p = signature;
if ((ecdsa_sig = d2i_ECDSA_SIG(NULL, &p, signature_len)) == NULL)
goto err;
free(signature);
return (ecdsa_sig);
err:
free(signature);
return (NULL);
}
ECDSA_METHOD *
tls_signer_ecdsa_method(void)
{
static ECDSA_METHOD *ecdsa_method = NULL;
pthread_mutex_lock(&signer_method_lock);
if (ecdsa_method != NULL)
goto out;
ecdsa_method = calloc(1, sizeof(*ecdsa_method));
if (ecdsa_method == NULL)
goto out;
ecdsa_method->ecdsa_do_sign = tls_ecdsa_do_sign;
ecdsa_method->name = strdup("libtls ECDSA method");
if (ecdsa_method->name == NULL) {
free(ecdsa_method);
ecdsa_method = NULL;
}
out:
pthread_mutex_unlock(&signer_method_lock);
return (ecdsa_method);
}