mirror of
https://github.com/pineappleEA/pineapple-src.git
synced 2025-01-19 11:54:08 -05:00
1097 lines
25 KiB
C
Executable File
1097 lines
25 KiB
C
Executable File
/* $OpenBSD: bn_asm.c,v 1.15 2017/05/02 03:59:44 deraadt Exp $ */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
|
|
#ifndef BN_DEBUG
|
|
# undef NDEBUG /* avoid conflicting definitions */
|
|
# define NDEBUG
|
|
#endif
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
|
|
#include <openssl/opensslconf.h>
|
|
|
|
#include "bn_lcl.h"
|
|
|
|
#if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
|
|
|
|
BN_ULONG
|
|
bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
|
|
{
|
|
BN_ULONG c1 = 0;
|
|
|
|
assert(num >= 0);
|
|
if (num <= 0)
|
|
return (c1);
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (num & ~3) {
|
|
mul_add(rp[0], ap[0], w, c1);
|
|
mul_add(rp[1], ap[1], w, c1);
|
|
mul_add(rp[2], ap[2], w, c1);
|
|
mul_add(rp[3], ap[3], w, c1);
|
|
ap += 4;
|
|
rp += 4;
|
|
num -= 4;
|
|
}
|
|
#endif
|
|
while (num) {
|
|
mul_add(rp[0], ap[0], w, c1);
|
|
ap++;
|
|
rp++;
|
|
num--;
|
|
}
|
|
|
|
return (c1);
|
|
}
|
|
|
|
BN_ULONG
|
|
bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
|
|
{
|
|
BN_ULONG c1 = 0;
|
|
|
|
assert(num >= 0);
|
|
if (num <= 0)
|
|
return (c1);
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (num & ~3) {
|
|
mul(rp[0], ap[0], w, c1);
|
|
mul(rp[1], ap[1], w, c1);
|
|
mul(rp[2], ap[2], w, c1);
|
|
mul(rp[3], ap[3], w, c1);
|
|
ap += 4;
|
|
rp += 4;
|
|
num -= 4;
|
|
}
|
|
#endif
|
|
while (num) {
|
|
mul(rp[0], ap[0], w, c1);
|
|
ap++;
|
|
rp++;
|
|
num--;
|
|
}
|
|
return (c1);
|
|
}
|
|
|
|
void
|
|
bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
|
|
{
|
|
assert(n >= 0);
|
|
if (n <= 0)
|
|
return;
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (n & ~3) {
|
|
sqr(r[0], r[1], a[0]);
|
|
sqr(r[2], r[3], a[1]);
|
|
sqr(r[4], r[5], a[2]);
|
|
sqr(r[6], r[7], a[3]);
|
|
a += 4;
|
|
r += 8;
|
|
n -= 4;
|
|
}
|
|
#endif
|
|
while (n) {
|
|
sqr(r[0], r[1], a[0]);
|
|
a++;
|
|
r += 2;
|
|
n--;
|
|
}
|
|
}
|
|
|
|
#else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
|
|
|
|
BN_ULONG
|
|
bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
|
|
{
|
|
BN_ULONG c = 0;
|
|
BN_ULONG bl, bh;
|
|
|
|
assert(num >= 0);
|
|
if (num <= 0)
|
|
return ((BN_ULONG)0);
|
|
|
|
bl = LBITS(w);
|
|
bh = HBITS(w);
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (num & ~3) {
|
|
mul_add(rp[0], ap[0], bl, bh, c);
|
|
mul_add(rp[1], ap[1], bl, bh, c);
|
|
mul_add(rp[2], ap[2], bl, bh, c);
|
|
mul_add(rp[3], ap[3], bl, bh, c);
|
|
ap += 4;
|
|
rp += 4;
|
|
num -= 4;
|
|
}
|
|
#endif
|
|
while (num) {
|
|
mul_add(rp[0], ap[0], bl, bh, c);
|
|
ap++;
|
|
rp++;
|
|
num--;
|
|
}
|
|
return (c);
|
|
}
|
|
|
|
BN_ULONG
|
|
bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
|
|
{
|
|
BN_ULONG carry = 0;
|
|
BN_ULONG bl, bh;
|
|
|
|
assert(num >= 0);
|
|
if (num <= 0)
|
|
return ((BN_ULONG)0);
|
|
|
|
bl = LBITS(w);
|
|
bh = HBITS(w);
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (num & ~3) {
|
|
mul(rp[0], ap[0], bl, bh, carry);
|
|
mul(rp[1], ap[1], bl, bh, carry);
|
|
mul(rp[2], ap[2], bl, bh, carry);
|
|
mul(rp[3], ap[3], bl, bh, carry);
|
|
ap += 4;
|
|
rp += 4;
|
|
num -= 4;
|
|
}
|
|
#endif
|
|
while (num) {
|
|
mul(rp[0], ap[0], bl, bh, carry);
|
|
ap++;
|
|
rp++;
|
|
num--;
|
|
}
|
|
return (carry);
|
|
}
|
|
|
|
void
|
|
bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
|
|
{
|
|
assert(n >= 0);
|
|
if (n <= 0)
|
|
return;
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (n & ~3) {
|
|
sqr64(r[0], r[1], a[0]);
|
|
sqr64(r[2], r[3], a[1]);
|
|
sqr64(r[4], r[5], a[2]);
|
|
sqr64(r[6], r[7], a[3]);
|
|
a += 4;
|
|
r += 8;
|
|
n -= 4;
|
|
}
|
|
#endif
|
|
while (n) {
|
|
sqr64(r[0], r[1], a[0]);
|
|
a++;
|
|
r += 2;
|
|
n--;
|
|
}
|
|
}
|
|
|
|
#endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
|
|
|
|
#if defined(BN_LLONG) && defined(BN_DIV2W)
|
|
|
|
BN_ULONG
|
|
bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
|
|
{
|
|
return ((BN_ULONG)(((((BN_ULLONG)h) << BN_BITS2)|l)/(BN_ULLONG)d));
|
|
}
|
|
|
|
#else
|
|
|
|
/* Divide h,l by d and return the result. */
|
|
/* I need to test this some more :-( */
|
|
BN_ULONG
|
|
bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
|
|
{
|
|
BN_ULONG dh, dl, q,ret = 0, th, tl, t;
|
|
int i, count = 2;
|
|
|
|
if (d == 0)
|
|
return (BN_MASK2);
|
|
|
|
i = BN_num_bits_word(d);
|
|
assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
|
|
|
|
i = BN_BITS2 - i;
|
|
if (h >= d)
|
|
h -= d;
|
|
|
|
if (i) {
|
|
d <<= i;
|
|
h = (h << i) | (l >> (BN_BITS2 - i));
|
|
l <<= i;
|
|
}
|
|
dh = (d & BN_MASK2h) >> BN_BITS4;
|
|
dl = (d & BN_MASK2l);
|
|
for (;;) {
|
|
if ((h >> BN_BITS4) == dh)
|
|
q = BN_MASK2l;
|
|
else
|
|
q = h / dh;
|
|
|
|
th = q * dh;
|
|
tl = dl * q;
|
|
for (;;) {
|
|
t = h - th;
|
|
if ((t & BN_MASK2h) ||
|
|
((tl) <= (
|
|
(t << BN_BITS4) |
|
|
((l & BN_MASK2h) >> BN_BITS4))))
|
|
break;
|
|
q--;
|
|
th -= dh;
|
|
tl -= dl;
|
|
}
|
|
t = (tl >> BN_BITS4);
|
|
tl = (tl << BN_BITS4) & BN_MASK2h;
|
|
th += t;
|
|
|
|
if (l < tl)
|
|
th++;
|
|
l -= tl;
|
|
if (h < th) {
|
|
h += d;
|
|
q--;
|
|
}
|
|
h -= th;
|
|
|
|
if (--count == 0)
|
|
break;
|
|
|
|
ret = q << BN_BITS4;
|
|
h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
|
|
l = (l & BN_MASK2l) << BN_BITS4;
|
|
}
|
|
ret |= q;
|
|
return (ret);
|
|
}
|
|
#endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
|
|
|
|
#ifdef BN_LLONG
|
|
BN_ULONG
|
|
bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
|
|
{
|
|
BN_ULLONG ll = 0;
|
|
|
|
assert(n >= 0);
|
|
if (n <= 0)
|
|
return ((BN_ULONG)0);
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (n & ~3) {
|
|
ll += (BN_ULLONG)a[0] + b[0];
|
|
r[0] = (BN_ULONG)ll & BN_MASK2;
|
|
ll >>= BN_BITS2;
|
|
ll += (BN_ULLONG)a[1] + b[1];
|
|
r[1] = (BN_ULONG)ll & BN_MASK2;
|
|
ll >>= BN_BITS2;
|
|
ll += (BN_ULLONG)a[2] + b[2];
|
|
r[2] = (BN_ULONG)ll & BN_MASK2;
|
|
ll >>= BN_BITS2;
|
|
ll += (BN_ULLONG)a[3] + b[3];
|
|
r[3] = (BN_ULONG)ll & BN_MASK2;
|
|
ll >>= BN_BITS2;
|
|
a += 4;
|
|
b += 4;
|
|
r += 4;
|
|
n -= 4;
|
|
}
|
|
#endif
|
|
while (n) {
|
|
ll += (BN_ULLONG)a[0] + b[0];
|
|
r[0] = (BN_ULONG)ll & BN_MASK2;
|
|
ll >>= BN_BITS2;
|
|
a++;
|
|
b++;
|
|
r++;
|
|
n--;
|
|
}
|
|
return ((BN_ULONG)ll);
|
|
}
|
|
#else /* !BN_LLONG */
|
|
BN_ULONG
|
|
bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
|
|
{
|
|
BN_ULONG c, l, t;
|
|
|
|
assert(n >= 0);
|
|
if (n <= 0)
|
|
return ((BN_ULONG)0);
|
|
|
|
c = 0;
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (n & ~3) {
|
|
t = a[0];
|
|
t = (t + c) & BN_MASK2;
|
|
c = (t < c);
|
|
l = (t + b[0]) & BN_MASK2;
|
|
c += (l < t);
|
|
r[0] = l;
|
|
t = a[1];
|
|
t = (t + c) & BN_MASK2;
|
|
c = (t < c);
|
|
l = (t + b[1]) & BN_MASK2;
|
|
c += (l < t);
|
|
r[1] = l;
|
|
t = a[2];
|
|
t = (t + c) & BN_MASK2;
|
|
c = (t < c);
|
|
l = (t + b[2]) & BN_MASK2;
|
|
c += (l < t);
|
|
r[2] = l;
|
|
t = a[3];
|
|
t = (t + c) & BN_MASK2;
|
|
c = (t < c);
|
|
l = (t + b[3]) & BN_MASK2;
|
|
c += (l < t);
|
|
r[3] = l;
|
|
a += 4;
|
|
b += 4;
|
|
r += 4;
|
|
n -= 4;
|
|
}
|
|
#endif
|
|
while (n) {
|
|
t = a[0];
|
|
t = (t + c) & BN_MASK2;
|
|
c = (t < c);
|
|
l = (t + b[0]) & BN_MASK2;
|
|
c += (l < t);
|
|
r[0] = l;
|
|
a++;
|
|
b++;
|
|
r++;
|
|
n--;
|
|
}
|
|
return ((BN_ULONG)c);
|
|
}
|
|
#endif /* !BN_LLONG */
|
|
|
|
BN_ULONG
|
|
bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
|
|
{
|
|
BN_ULONG t1, t2;
|
|
int c = 0;
|
|
|
|
assert(n >= 0);
|
|
if (n <= 0)
|
|
return ((BN_ULONG)0);
|
|
|
|
#ifndef OPENSSL_SMALL_FOOTPRINT
|
|
while (n&~3) {
|
|
t1 = a[0];
|
|
t2 = b[0];
|
|
r[0] = (t1 - t2 - c) & BN_MASK2;
|
|
if (t1 != t2)
|
|
c = (t1 < t2);
|
|
t1 = a[1];
|
|
t2 = b[1];
|
|
r[1] = (t1 - t2 - c) & BN_MASK2;
|
|
if (t1 != t2)
|
|
c = (t1 < t2);
|
|
t1 = a[2];
|
|
t2 = b[2];
|
|
r[2] = (t1 - t2 - c) & BN_MASK2;
|
|
if (t1 != t2)
|
|
c = (t1 < t2);
|
|
t1 = a[3];
|
|
t2 = b[3];
|
|
r[3] = (t1 - t2 - c) & BN_MASK2;
|
|
if (t1 != t2)
|
|
c = (t1 < t2);
|
|
a += 4;
|
|
b += 4;
|
|
r += 4;
|
|
n -= 4;
|
|
}
|
|
#endif
|
|
while (n) {
|
|
t1 = a[0];
|
|
t2 = b[0];
|
|
r[0] = (t1 - t2 - c) & BN_MASK2;
|
|
if (t1 != t2)
|
|
c = (t1 < t2);
|
|
a++;
|
|
b++;
|
|
r++;
|
|
n--;
|
|
}
|
|
return (c);
|
|
}
|
|
|
|
#if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
|
|
|
|
#undef bn_mul_comba8
|
|
#undef bn_mul_comba4
|
|
#undef bn_sqr_comba8
|
|
#undef bn_sqr_comba4
|
|
|
|
/* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
|
|
/* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
|
|
/* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
|
|
/* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
|
|
|
|
#ifdef BN_LLONG
|
|
/*
|
|
* Keep in mind that additions to multiplication result can not
|
|
* overflow, because its high half cannot be all-ones.
|
|
*/
|
|
#define mul_add_c(a,b,c0,c1,c2) do { \
|
|
BN_ULONG hi; \
|
|
BN_ULLONG t = (BN_ULLONG)(a)*(b); \
|
|
t += c0; /* no carry */ \
|
|
c0 = (BN_ULONG)Lw(t); \
|
|
hi = (BN_ULONG)Hw(t); \
|
|
c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
|
|
} while(0)
|
|
|
|
#define mul_add_c2(a,b,c0,c1,c2) do { \
|
|
BN_ULONG hi; \
|
|
BN_ULLONG t = (BN_ULLONG)(a)*(b); \
|
|
BN_ULLONG tt = t+c0; /* no carry */ \
|
|
c0 = (BN_ULONG)Lw(tt); \
|
|
hi = (BN_ULONG)Hw(tt); \
|
|
c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
|
|
t += c0; /* no carry */ \
|
|
c0 = (BN_ULONG)Lw(t); \
|
|
hi = (BN_ULONG)Hw(t); \
|
|
c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
|
|
} while(0)
|
|
|
|
#define sqr_add_c(a,i,c0,c1,c2) do { \
|
|
BN_ULONG hi; \
|
|
BN_ULLONG t = (BN_ULLONG)a[i]*a[i]; \
|
|
t += c0; /* no carry */ \
|
|
c0 = (BN_ULONG)Lw(t); \
|
|
hi = (BN_ULONG)Hw(t); \
|
|
c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
|
|
} while(0)
|
|
|
|
#define sqr_add_c2(a,i,j,c0,c1,c2) \
|
|
mul_add_c2((a)[i],(a)[j],c0,c1,c2)
|
|
|
|
#elif defined(BN_UMULT_LOHI)
|
|
/*
|
|
* Keep in mind that additions to hi can not overflow, because
|
|
* the high word of a multiplication result cannot be all-ones.
|
|
*/
|
|
#define mul_add_c(a,b,c0,c1,c2) do { \
|
|
BN_ULONG ta = (a), tb = (b); \
|
|
BN_ULONG lo, hi; \
|
|
BN_UMULT_LOHI(lo,hi,ta,tb); \
|
|
c0 += lo; hi += (c0<lo)?1:0; \
|
|
c1 += hi; c2 += (c1<hi)?1:0; \
|
|
} while(0)
|
|
|
|
#define mul_add_c2(a,b,c0,c1,c2) do { \
|
|
BN_ULONG ta = (a), tb = (b); \
|
|
BN_ULONG lo, hi, tt; \
|
|
BN_UMULT_LOHI(lo,hi,ta,tb); \
|
|
c0 += lo; tt = hi+((c0<lo)?1:0); \
|
|
c1 += tt; c2 += (c1<tt)?1:0; \
|
|
c0 += lo; hi += (c0<lo)?1:0; \
|
|
c1 += hi; c2 += (c1<hi)?1:0; \
|
|
} while(0)
|
|
|
|
#define sqr_add_c(a,i,c0,c1,c2) do { \
|
|
BN_ULONG ta = (a)[i]; \
|
|
BN_ULONG lo, hi; \
|
|
BN_UMULT_LOHI(lo,hi,ta,ta); \
|
|
c0 += lo; hi += (c0<lo)?1:0; \
|
|
c1 += hi; c2 += (c1<hi)?1:0; \
|
|
} while(0)
|
|
|
|
#define sqr_add_c2(a,i,j,c0,c1,c2) \
|
|
mul_add_c2((a)[i],(a)[j],c0,c1,c2)
|
|
|
|
#elif defined(BN_UMULT_HIGH)
|
|
/*
|
|
* Keep in mind that additions to hi can not overflow, because
|
|
* the high word of a multiplication result cannot be all-ones.
|
|
*/
|
|
#define mul_add_c(a,b,c0,c1,c2) do { \
|
|
BN_ULONG ta = (a), tb = (b); \
|
|
BN_ULONG lo = ta * tb; \
|
|
BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \
|
|
c0 += lo; hi += (c0<lo)?1:0; \
|
|
c1 += hi; c2 += (c1<hi)?1:0; \
|
|
} while(0)
|
|
|
|
#define mul_add_c2(a,b,c0,c1,c2) do { \
|
|
BN_ULONG ta = (a), tb = (b), tt; \
|
|
BN_ULONG lo = ta * tb; \
|
|
BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \
|
|
c0 += lo; tt = hi + ((c0<lo)?1:0); \
|
|
c1 += tt; c2 += (c1<tt)?1:0; \
|
|
c0 += lo; hi += (c0<lo)?1:0; \
|
|
c1 += hi; c2 += (c1<hi)?1:0; \
|
|
} while(0)
|
|
|
|
#define sqr_add_c(a,i,c0,c1,c2) do { \
|
|
BN_ULONG ta = (a)[i]; \
|
|
BN_ULONG lo = ta * ta; \
|
|
BN_ULONG hi = BN_UMULT_HIGH(ta,ta); \
|
|
c0 += lo; hi += (c0<lo)?1:0; \
|
|
c1 += hi; c2 += (c1<hi)?1:0; \
|
|
} while(0)
|
|
|
|
#define sqr_add_c2(a,i,j,c0,c1,c2) \
|
|
mul_add_c2((a)[i],(a)[j],c0,c1,c2)
|
|
|
|
#else /* !BN_LLONG */
|
|
/*
|
|
* Keep in mind that additions to hi can not overflow, because
|
|
* the high word of a multiplication result cannot be all-ones.
|
|
*/
|
|
#define mul_add_c(a,b,c0,c1,c2) do { \
|
|
BN_ULONG lo = LBITS(a), hi = HBITS(a); \
|
|
BN_ULONG bl = LBITS(b), bh = HBITS(b); \
|
|
mul64(lo,hi,bl,bh); \
|
|
c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
|
|
c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
|
|
} while(0)
|
|
|
|
#define mul_add_c2(a,b,c0,c1,c2) do { \
|
|
BN_ULONG tt; \
|
|
BN_ULONG lo = LBITS(a), hi = HBITS(a); \
|
|
BN_ULONG bl = LBITS(b), bh = HBITS(b); \
|
|
mul64(lo,hi,bl,bh); \
|
|
tt = hi; \
|
|
c0 = (c0+lo)&BN_MASK2; if (c0<lo) tt++; \
|
|
c1 = (c1+tt)&BN_MASK2; if (c1<tt) c2++; \
|
|
c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
|
|
c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
|
|
} while(0)
|
|
|
|
#define sqr_add_c(a,i,c0,c1,c2) do { \
|
|
BN_ULONG lo, hi; \
|
|
sqr64(lo,hi,(a)[i]); \
|
|
c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
|
|
c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
|
|
} while(0)
|
|
|
|
#define sqr_add_c2(a,i,j,c0,c1,c2) \
|
|
mul_add_c2((a)[i],(a)[j],c0,c1,c2)
|
|
#endif /* !BN_LLONG */
|
|
|
|
void
|
|
bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
|
|
{
|
|
BN_ULONG c1, c2, c3;
|
|
|
|
c1 = 0;
|
|
c2 = 0;
|
|
c3 = 0;
|
|
mul_add_c(a[0], b[0], c1, c2, c3);
|
|
r[0] = c1;
|
|
c1 = 0;
|
|
mul_add_c(a[0], b[1], c2, c3, c1);
|
|
mul_add_c(a[1], b[0], c2, c3, c1);
|
|
r[1] = c2;
|
|
c2 = 0;
|
|
mul_add_c(a[2], b[0], c3, c1, c2);
|
|
mul_add_c(a[1], b[1], c3, c1, c2);
|
|
mul_add_c(a[0], b[2], c3, c1, c2);
|
|
r[2] = c3;
|
|
c3 = 0;
|
|
mul_add_c(a[0], b[3], c1, c2, c3);
|
|
mul_add_c(a[1], b[2], c1, c2, c3);
|
|
mul_add_c(a[2], b[1], c1, c2, c3);
|
|
mul_add_c(a[3], b[0], c1, c2, c3);
|
|
r[3] = c1;
|
|
c1 = 0;
|
|
mul_add_c(a[4], b[0], c2, c3, c1);
|
|
mul_add_c(a[3], b[1], c2, c3, c1);
|
|
mul_add_c(a[2], b[2], c2, c3, c1);
|
|
mul_add_c(a[1], b[3], c2, c3, c1);
|
|
mul_add_c(a[0], b[4], c2, c3, c1);
|
|
r[4] = c2;
|
|
c2 = 0;
|
|
mul_add_c(a[0], b[5], c3, c1, c2);
|
|
mul_add_c(a[1], b[4], c3, c1, c2);
|
|
mul_add_c(a[2], b[3], c3, c1, c2);
|
|
mul_add_c(a[3], b[2], c3, c1, c2);
|
|
mul_add_c(a[4], b[1], c3, c1, c2);
|
|
mul_add_c(a[5], b[0], c3, c1, c2);
|
|
r[5] = c3;
|
|
c3 = 0;
|
|
mul_add_c(a[6], b[0], c1, c2, c3);
|
|
mul_add_c(a[5], b[1], c1, c2, c3);
|
|
mul_add_c(a[4], b[2], c1, c2, c3);
|
|
mul_add_c(a[3], b[3], c1, c2, c3);
|
|
mul_add_c(a[2], b[4], c1, c2, c3);
|
|
mul_add_c(a[1], b[5], c1, c2, c3);
|
|
mul_add_c(a[0], b[6], c1, c2, c3);
|
|
r[6] = c1;
|
|
c1 = 0;
|
|
mul_add_c(a[0], b[7], c2, c3, c1);
|
|
mul_add_c(a[1], b[6], c2, c3, c1);
|
|
mul_add_c(a[2], b[5], c2, c3, c1);
|
|
mul_add_c(a[3], b[4], c2, c3, c1);
|
|
mul_add_c(a[4], b[3], c2, c3, c1);
|
|
mul_add_c(a[5], b[2], c2, c3, c1);
|
|
mul_add_c(a[6], b[1], c2, c3, c1);
|
|
mul_add_c(a[7], b[0], c2, c3, c1);
|
|
r[7] = c2;
|
|
c2 = 0;
|
|
mul_add_c(a[7], b[1], c3, c1, c2);
|
|
mul_add_c(a[6], b[2], c3, c1, c2);
|
|
mul_add_c(a[5], b[3], c3, c1, c2);
|
|
mul_add_c(a[4], b[4], c3, c1, c2);
|
|
mul_add_c(a[3], b[5], c3, c1, c2);
|
|
mul_add_c(a[2], b[6], c3, c1, c2);
|
|
mul_add_c(a[1], b[7], c3, c1, c2);
|
|
r[8] = c3;
|
|
c3 = 0;
|
|
mul_add_c(a[2], b[7], c1, c2, c3);
|
|
mul_add_c(a[3], b[6], c1, c2, c3);
|
|
mul_add_c(a[4], b[5], c1, c2, c3);
|
|
mul_add_c(a[5], b[4], c1, c2, c3);
|
|
mul_add_c(a[6], b[3], c1, c2, c3);
|
|
mul_add_c(a[7], b[2], c1, c2, c3);
|
|
r[9] = c1;
|
|
c1 = 0;
|
|
mul_add_c(a[7], b[3], c2, c3, c1);
|
|
mul_add_c(a[6], b[4], c2, c3, c1);
|
|
mul_add_c(a[5], b[5], c2, c3, c1);
|
|
mul_add_c(a[4], b[6], c2, c3, c1);
|
|
mul_add_c(a[3], b[7], c2, c3, c1);
|
|
r[10] = c2;
|
|
c2 = 0;
|
|
mul_add_c(a[4], b[7], c3, c1, c2);
|
|
mul_add_c(a[5], b[6], c3, c1, c2);
|
|
mul_add_c(a[6], b[5], c3, c1, c2);
|
|
mul_add_c(a[7], b[4], c3, c1, c2);
|
|
r[11] = c3;
|
|
c3 = 0;
|
|
mul_add_c(a[7], b[5], c1, c2, c3);
|
|
mul_add_c(a[6], b[6], c1, c2, c3);
|
|
mul_add_c(a[5], b[7], c1, c2, c3);
|
|
r[12] = c1;
|
|
c1 = 0;
|
|
mul_add_c(a[6], b[7], c2, c3, c1);
|
|
mul_add_c(a[7], b[6], c2, c3, c1);
|
|
r[13] = c2;
|
|
c2 = 0;
|
|
mul_add_c(a[7], b[7], c3, c1, c2);
|
|
r[14] = c3;
|
|
r[15] = c1;
|
|
}
|
|
|
|
void
|
|
bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
|
|
{
|
|
BN_ULONG c1, c2, c3;
|
|
|
|
c1 = 0;
|
|
c2 = 0;
|
|
c3 = 0;
|
|
mul_add_c(a[0], b[0], c1, c2, c3);
|
|
r[0] = c1;
|
|
c1 = 0;
|
|
mul_add_c(a[0], b[1], c2, c3, c1);
|
|
mul_add_c(a[1], b[0], c2, c3, c1);
|
|
r[1] = c2;
|
|
c2 = 0;
|
|
mul_add_c(a[2], b[0], c3, c1, c2);
|
|
mul_add_c(a[1], b[1], c3, c1, c2);
|
|
mul_add_c(a[0], b[2], c3, c1, c2);
|
|
r[2] = c3;
|
|
c3 = 0;
|
|
mul_add_c(a[0], b[3], c1, c2, c3);
|
|
mul_add_c(a[1], b[2], c1, c2, c3);
|
|
mul_add_c(a[2], b[1], c1, c2, c3);
|
|
mul_add_c(a[3], b[0], c1, c2, c3);
|
|
r[3] = c1;
|
|
c1 = 0;
|
|
mul_add_c(a[3], b[1], c2, c3, c1);
|
|
mul_add_c(a[2], b[2], c2, c3, c1);
|
|
mul_add_c(a[1], b[3], c2, c3, c1);
|
|
r[4] = c2;
|
|
c2 = 0;
|
|
mul_add_c(a[2], b[3], c3, c1, c2);
|
|
mul_add_c(a[3], b[2], c3, c1, c2);
|
|
r[5] = c3;
|
|
c3 = 0;
|
|
mul_add_c(a[3], b[3], c1, c2, c3);
|
|
r[6] = c1;
|
|
r[7] = c2;
|
|
}
|
|
|
|
void
|
|
bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
|
|
{
|
|
BN_ULONG c1, c2, c3;
|
|
|
|
c1 = 0;
|
|
c2 = 0;
|
|
c3 = 0;
|
|
sqr_add_c(a, 0, c1, c2, c3);
|
|
r[0] = c1;
|
|
c1 = 0;
|
|
sqr_add_c2(a, 1, 0, c2, c3, c1);
|
|
r[1] = c2;
|
|
c2 = 0;
|
|
sqr_add_c(a, 1, c3, c1, c2);
|
|
sqr_add_c2(a, 2, 0, c3, c1, c2);
|
|
r[2] = c3;
|
|
c3 = 0;
|
|
sqr_add_c2(a, 3, 0, c1, c2, c3);
|
|
sqr_add_c2(a, 2, 1, c1, c2, c3);
|
|
r[3] = c1;
|
|
c1 = 0;
|
|
sqr_add_c(a, 2, c2, c3, c1);
|
|
sqr_add_c2(a, 3, 1, c2, c3, c1);
|
|
sqr_add_c2(a, 4, 0, c2, c3, c1);
|
|
r[4] = c2;
|
|
c2 = 0;
|
|
sqr_add_c2(a, 5, 0, c3, c1, c2);
|
|
sqr_add_c2(a, 4, 1, c3, c1, c2);
|
|
sqr_add_c2(a, 3, 2, c3, c1, c2);
|
|
r[5] = c3;
|
|
c3 = 0;
|
|
sqr_add_c(a, 3, c1, c2, c3);
|
|
sqr_add_c2(a, 4, 2, c1, c2, c3);
|
|
sqr_add_c2(a, 5, 1, c1, c2, c3);
|
|
sqr_add_c2(a, 6, 0, c1, c2, c3);
|
|
r[6] = c1;
|
|
c1 = 0;
|
|
sqr_add_c2(a, 7, 0, c2, c3, c1);
|
|
sqr_add_c2(a, 6, 1, c2, c3, c1);
|
|
sqr_add_c2(a, 5, 2, c2, c3, c1);
|
|
sqr_add_c2(a, 4, 3, c2, c3, c1);
|
|
r[7] = c2;
|
|
c2 = 0;
|
|
sqr_add_c(a, 4, c3, c1, c2);
|
|
sqr_add_c2(a, 5, 3, c3, c1, c2);
|
|
sqr_add_c2(a, 6, 2, c3, c1, c2);
|
|
sqr_add_c2(a, 7, 1, c3, c1, c2);
|
|
r[8] = c3;
|
|
c3 = 0;
|
|
sqr_add_c2(a, 7, 2, c1, c2, c3);
|
|
sqr_add_c2(a, 6, 3, c1, c2, c3);
|
|
sqr_add_c2(a, 5, 4, c1, c2, c3);
|
|
r[9] = c1;
|
|
c1 = 0;
|
|
sqr_add_c(a, 5, c2, c3, c1);
|
|
sqr_add_c2(a, 6, 4, c2, c3, c1);
|
|
sqr_add_c2(a, 7, 3, c2, c3, c1);
|
|
r[10] = c2;
|
|
c2 = 0;
|
|
sqr_add_c2(a, 7, 4, c3, c1, c2);
|
|
sqr_add_c2(a, 6, 5, c3, c1, c2);
|
|
r[11] = c3;
|
|
c3 = 0;
|
|
sqr_add_c(a, 6, c1, c2, c3);
|
|
sqr_add_c2(a, 7, 5, c1, c2, c3);
|
|
r[12] = c1;
|
|
c1 = 0;
|
|
sqr_add_c2(a, 7, 6, c2, c3, c1);
|
|
r[13] = c2;
|
|
c2 = 0;
|
|
sqr_add_c(a, 7, c3, c1, c2);
|
|
r[14] = c3;
|
|
r[15] = c1;
|
|
}
|
|
|
|
void
|
|
bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
|
|
{
|
|
BN_ULONG c1, c2, c3;
|
|
|
|
c1 = 0;
|
|
c2 = 0;
|
|
c3 = 0;
|
|
sqr_add_c(a, 0, c1, c2, c3);
|
|
r[0] = c1;
|
|
c1 = 0;
|
|
sqr_add_c2(a, 1, 0, c2, c3, c1);
|
|
r[1] = c2;
|
|
c2 = 0;
|
|
sqr_add_c(a, 1, c3, c1, c2);
|
|
sqr_add_c2(a, 2, 0, c3, c1, c2);
|
|
r[2] = c3;
|
|
c3 = 0;
|
|
sqr_add_c2(a, 3, 0, c1, c2, c3);
|
|
sqr_add_c2(a, 2, 1, c1, c2, c3);
|
|
r[3] = c1;
|
|
c1 = 0;
|
|
sqr_add_c(a, 2, c2, c3, c1);
|
|
sqr_add_c2(a, 3, 1, c2, c3, c1);
|
|
r[4] = c2;
|
|
c2 = 0;
|
|
sqr_add_c2(a, 3, 2, c3, c1, c2);
|
|
r[5] = c3;
|
|
c3 = 0;
|
|
sqr_add_c(a, 3, c1, c2, c3);
|
|
r[6] = c1;
|
|
r[7] = c2;
|
|
}
|
|
|
|
#ifdef OPENSSL_NO_ASM
|
|
#ifdef OPENSSL_BN_ASM_MONT
|
|
/*
|
|
* This is essentially reference implementation, which may or may not
|
|
* result in performance improvement. E.g. on IA-32 this routine was
|
|
* observed to give 40% faster rsa1024 private key operations and 10%
|
|
* faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
|
|
* by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
|
|
* reference implementation, one to be used as starting point for
|
|
* platform-specific assembler. Mentioned numbers apply to compiler
|
|
* generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
|
|
* can vary not only from platform to platform, but even for compiler
|
|
* versions. Assembler vs. assembler improvement coefficients can
|
|
* [and are known to] differ and are to be documented elsewhere.
|
|
*/
|
|
int
|
|
bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0p, int num)
|
|
{
|
|
BN_ULONG c0, c1, ml, *tp, n0;
|
|
#ifdef mul64
|
|
BN_ULONG mh;
|
|
#endif
|
|
int i = 0, j;
|
|
|
|
#if 0 /* template for platform-specific implementation */
|
|
if (ap == bp)
|
|
return bn_sqr_mont(rp, ap, np, n0p, num);
|
|
#endif
|
|
tp = reallocarray(NULL, num + 2, sizeof(BN_ULONG));
|
|
if (tp == NULL)
|
|
return 0;
|
|
|
|
n0 = *n0p;
|
|
|
|
c0 = 0;
|
|
ml = bp[0];
|
|
#ifdef mul64
|
|
mh = HBITS(ml);
|
|
ml = LBITS(ml);
|
|
for (j = 0; j < num; ++j)
|
|
mul(tp[j], ap[j], ml, mh, c0);
|
|
#else
|
|
for (j = 0; j < num; ++j)
|
|
mul(tp[j], ap[j], ml, c0);
|
|
#endif
|
|
|
|
tp[num] = c0;
|
|
tp[num + 1] = 0;
|
|
goto enter;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
c0 = 0;
|
|
ml = bp[i];
|
|
#ifdef mul64
|
|
mh = HBITS(ml);
|
|
ml = LBITS(ml);
|
|
for (j = 0; j < num; ++j)
|
|
mul_add(tp[j], ap[j], ml, mh, c0);
|
|
#else
|
|
for (j = 0; j < num; ++j)
|
|
mul_add(tp[j], ap[j], ml, c0);
|
|
#endif
|
|
c1 = (tp[num] + c0) & BN_MASK2;
|
|
tp[num] = c1;
|
|
tp[num + 1] = (c1 < c0 ? 1 : 0);
|
|
enter:
|
|
c1 = tp[0];
|
|
ml = (c1 * n0) & BN_MASK2;
|
|
c0 = 0;
|
|
#ifdef mul64
|
|
mh = HBITS(ml);
|
|
ml = LBITS(ml);
|
|
mul_add(c1, np[0], ml, mh, c0);
|
|
#else
|
|
mul_add(c1, ml, np[0], c0);
|
|
#endif
|
|
for (j = 1; j < num; j++) {
|
|
c1 = tp[j];
|
|
#ifdef mul64
|
|
mul_add(c1, np[j], ml, mh, c0);
|
|
#else
|
|
mul_add(c1, ml, np[j], c0);
|
|
#endif
|
|
tp[j - 1] = c1 & BN_MASK2;
|
|
}
|
|
c1 = (tp[num] + c0) & BN_MASK2;
|
|
tp[num - 1] = c1;
|
|
tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0);
|
|
}
|
|
|
|
if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
|
|
c0 = bn_sub_words(rp, tp, np, num);
|
|
if (tp[num] != 0 || c0 == 0) {
|
|
goto out;
|
|
}
|
|
}
|
|
memcpy(rp, tp, num * sizeof(BN_ULONG));
|
|
out:
|
|
freezero(tp, (num + 2) * sizeof(BN_ULONG));
|
|
return 1;
|
|
}
|
|
#else
|
|
/*
|
|
* Return value of 0 indicates that multiplication/convolution was not
|
|
* performed to signal the caller to fall down to alternative/original
|
|
* code-path.
|
|
*/
|
|
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num)
|
|
{ return 0;
|
|
}
|
|
#endif /* OPENSSL_BN_ASM_MONT */
|
|
#endif
|
|
|
|
#else /* !BN_MUL_COMBA */
|
|
|
|
/* hmm... is it faster just to do a multiply? */
|
|
#undef bn_sqr_comba4
|
|
void
|
|
bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
|
|
{
|
|
BN_ULONG t[8];
|
|
bn_sqr_normal(r, a, 4, t);
|
|
}
|
|
|
|
#undef bn_sqr_comba8
|
|
void
|
|
bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
|
|
{
|
|
BN_ULONG t[16];
|
|
bn_sqr_normal(r, a, 8, t);
|
|
}
|
|
|
|
void
|
|
bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
|
|
{
|
|
r[4] = bn_mul_words(&(r[0]), a, 4, b[0]);
|
|
r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]);
|
|
r[6] = bn_mul_add_words(&(r[2]), a, 4, b[2]);
|
|
r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]);
|
|
}
|
|
|
|
void
|
|
bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
|
|
{
|
|
r[8] = bn_mul_words(&(r[0]), a, 8, b[0]);
|
|
r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]);
|
|
r[10] = bn_mul_add_words(&(r[2]), a, 8, b[2]);
|
|
r[11] = bn_mul_add_words(&(r[3]), a, 8, b[3]);
|
|
r[12] = bn_mul_add_words(&(r[4]), a, 8, b[4]);
|
|
r[13] = bn_mul_add_words(&(r[5]), a, 8, b[5]);
|
|
r[14] = bn_mul_add_words(&(r[6]), a, 8, b[6]);
|
|
r[15] = bn_mul_add_words(&(r[7]), a, 8, b[7]);
|
|
}
|
|
|
|
#ifdef OPENSSL_NO_ASM
|
|
#ifdef OPENSSL_BN_ASM_MONT
|
|
int
|
|
bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
|
|
const BN_ULONG *np, const BN_ULONG *n0p, int num)
|
|
{
|
|
BN_ULONG c0, c1, *tp, n0 = *n0p;
|
|
int i = 0, j;
|
|
|
|
tp = calloc(NULL, num + 2, sizeof(BN_ULONG));
|
|
if (tp == NULL)
|
|
return 0;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
c0 = bn_mul_add_words(tp, ap, num, bp[i]);
|
|
c1 = (tp[num] + c0) & BN_MASK2;
|
|
tp[num] = c1;
|
|
tp[num + 1] = (c1 < c0 ? 1 : 0);
|
|
|
|
c0 = bn_mul_add_words(tp, np, num, tp[0] * n0);
|
|
c1 = (tp[num] + c0) & BN_MASK2;
|
|
tp[num] = c1;
|
|
tp[num + 1] += (c1 < c0 ? 1 : 0);
|
|
for (j = 0; j <= num; j++)
|
|
tp[j] = tp[j + 1];
|
|
}
|
|
|
|
if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
|
|
c0 = bn_sub_words(rp, tp, np, num);
|
|
if (tp[num] != 0 || c0 == 0) {
|
|
goto out;
|
|
}
|
|
}
|
|
memcpy(rp, tp, num * sizeof(BN_ULONG));
|
|
out:
|
|
freezero(tp, (num + 2) * sizeof(BN_ULONG));
|
|
return 1;
|
|
}
|
|
#else
|
|
int
|
|
bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
|
|
const BN_ULONG *np, const BN_ULONG *n0, int num)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* OPENSSL_BN_ASM_MONT */
|
|
#endif
|
|
|
|
#endif /* !BN_MUL_COMBA */
|