mirror of
https://github.com/pineappleEA/pineapple-src.git
synced 2025-01-21 05:44:04 -05:00
358 lines
11 KiB
C++
Executable File
358 lines
11 KiB
C++
Executable File
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include <cmath>
|
|
|
|
#include "common/math_util.h"
|
|
#include "core/hid/motion_input.h"
|
|
|
|
namespace Core::HID {
|
|
|
|
MotionInput::MotionInput() {
|
|
// Initialize PID constants with default values
|
|
SetPID(0.3f, 0.005f, 0.0f);
|
|
SetGyroThreshold(ThresholdStandard);
|
|
ResetQuaternion();
|
|
ResetRotations();
|
|
}
|
|
|
|
void MotionInput::SetPID(f32 new_kp, f32 new_ki, f32 new_kd) {
|
|
kp = new_kp;
|
|
ki = new_ki;
|
|
kd = new_kd;
|
|
}
|
|
|
|
void MotionInput::SetAcceleration(const Common::Vec3f& acceleration) {
|
|
accel = acceleration;
|
|
|
|
accel.x = std::clamp(accel.x, -AccelMaxValue, AccelMaxValue);
|
|
accel.y = std::clamp(accel.y, -AccelMaxValue, AccelMaxValue);
|
|
accel.z = std::clamp(accel.z, -AccelMaxValue, AccelMaxValue);
|
|
}
|
|
|
|
void MotionInput::SetGyroscope(const Common::Vec3f& gyroscope) {
|
|
gyro = gyroscope - gyro_bias;
|
|
|
|
gyro.x = std::clamp(gyro.x, -GyroMaxValue, GyroMaxValue);
|
|
gyro.y = std::clamp(gyro.y, -GyroMaxValue, GyroMaxValue);
|
|
gyro.z = std::clamp(gyro.z, -GyroMaxValue, GyroMaxValue);
|
|
|
|
// Auto adjust gyro_bias to minimize drift
|
|
if (!IsMoving(IsAtRestRelaxed)) {
|
|
gyro_bias = (gyro_bias * 0.9999f) + (gyroscope * 0.0001f);
|
|
}
|
|
|
|
// Adjust drift when calibration mode is enabled
|
|
if (calibration_mode) {
|
|
gyro_bias = (gyro_bias * 0.99f) + (gyroscope * 0.01f);
|
|
StopCalibration();
|
|
}
|
|
|
|
if (gyro.Length() < gyro_threshold * user_gyro_threshold) {
|
|
gyro = {};
|
|
} else {
|
|
only_accelerometer = false;
|
|
}
|
|
}
|
|
|
|
void MotionInput::SetQuaternion(const Common::Quaternion<f32>& quaternion) {
|
|
quat = quaternion;
|
|
}
|
|
|
|
void MotionInput::SetEulerAngles(const Common::Vec3f& euler_angles) {
|
|
const float cr = std::cos(euler_angles.x * 0.5f);
|
|
const float sr = std::sin(euler_angles.x * 0.5f);
|
|
const float cp = std::cos(euler_angles.y * 0.5f);
|
|
const float sp = std::sin(euler_angles.y * 0.5f);
|
|
const float cy = std::cos(euler_angles.z * 0.5f);
|
|
const float sy = std::sin(euler_angles.z * 0.5f);
|
|
|
|
quat.w = cr * cp * cy + sr * sp * sy;
|
|
quat.xyz.x = sr * cp * cy - cr * sp * sy;
|
|
quat.xyz.y = cr * sp * cy + sr * cp * sy;
|
|
quat.xyz.z = cr * cp * sy - sr * sp * cy;
|
|
}
|
|
|
|
void MotionInput::SetGyroBias(const Common::Vec3f& bias) {
|
|
gyro_bias = bias;
|
|
}
|
|
|
|
void MotionInput::SetGyroThreshold(f32 threshold) {
|
|
gyro_threshold = threshold;
|
|
}
|
|
|
|
void MotionInput::SetUserGyroThreshold(f32 threshold) {
|
|
user_gyro_threshold = threshold / ThresholdStandard;
|
|
}
|
|
|
|
void MotionInput::EnableReset(bool reset) {
|
|
reset_enabled = reset;
|
|
}
|
|
|
|
void MotionInput::ResetRotations() {
|
|
rotations = {};
|
|
}
|
|
|
|
void MotionInput::ResetQuaternion() {
|
|
quat = {{0.0f, 0.0f, -1.0f}, 0.0f};
|
|
}
|
|
|
|
bool MotionInput::IsMoving(f32 sensitivity) const {
|
|
return gyro.Length() >= sensitivity || accel.Length() <= 0.9f || accel.Length() >= 1.1f;
|
|
}
|
|
|
|
bool MotionInput::IsCalibrated(f32 sensitivity) const {
|
|
return real_error.Length() < sensitivity;
|
|
}
|
|
|
|
void MotionInput::UpdateRotation(u64 elapsed_time) {
|
|
const auto sample_period = static_cast<f32>(elapsed_time) / 1000000.0f;
|
|
if (sample_period > 0.1f) {
|
|
return;
|
|
}
|
|
rotations += gyro * sample_period;
|
|
}
|
|
|
|
void MotionInput::Calibrate() {
|
|
calibration_mode = true;
|
|
calibration_counter = 0;
|
|
}
|
|
|
|
void MotionInput::StopCalibration() {
|
|
if (calibration_counter++ > CalibrationSamples) {
|
|
calibration_mode = false;
|
|
ResetQuaternion();
|
|
ResetRotations();
|
|
}
|
|
}
|
|
|
|
// Based on Madgwick's implementation of Mayhony's AHRS algorithm.
|
|
// https://github.com/xioTechnologies/Open-Source-AHRS-With-x-IMU/blob/master/x-IMU%20IMU%20and%20AHRS%20Algorithms/x-IMU%20IMU%20and%20AHRS%20Algorithms/AHRS/MahonyAHRS.cs
|
|
void MotionInput::UpdateOrientation(u64 elapsed_time) {
|
|
if (!IsCalibrated(0.1f)) {
|
|
ResetOrientation();
|
|
}
|
|
// Short name local variable for readability
|
|
f32 q1 = quat.w;
|
|
f32 q2 = quat.xyz[0];
|
|
f32 q3 = quat.xyz[1];
|
|
f32 q4 = quat.xyz[2];
|
|
const auto sample_period = static_cast<f32>(elapsed_time) / 1000000.0f;
|
|
|
|
// Ignore invalid elapsed time
|
|
if (sample_period > 0.1f) {
|
|
return;
|
|
}
|
|
|
|
const auto normal_accel = accel.Normalized();
|
|
auto rad_gyro = gyro * Common::PI * 2;
|
|
const f32 swap = rad_gyro.x;
|
|
rad_gyro.x = rad_gyro.y;
|
|
rad_gyro.y = -swap;
|
|
rad_gyro.z = -rad_gyro.z;
|
|
|
|
// Clear gyro values if there is no gyro present
|
|
if (only_accelerometer) {
|
|
rad_gyro.x = 0;
|
|
rad_gyro.y = 0;
|
|
rad_gyro.z = 0;
|
|
}
|
|
|
|
// Ignore drift correction if acceleration is not reliable
|
|
if (accel.Length() >= 0.75f && accel.Length() <= 1.25f) {
|
|
const f32 ax = -normal_accel.x;
|
|
const f32 ay = normal_accel.y;
|
|
const f32 az = -normal_accel.z;
|
|
|
|
// Estimated direction of gravity
|
|
const f32 vx = 2.0f * (q2 * q4 - q1 * q3);
|
|
const f32 vy = 2.0f * (q1 * q2 + q3 * q4);
|
|
const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;
|
|
|
|
// Error is cross product between estimated direction and measured direction of gravity
|
|
const Common::Vec3f new_real_error = {
|
|
az * vx - ax * vz,
|
|
ay * vz - az * vy,
|
|
ax * vy - ay * vx,
|
|
};
|
|
|
|
derivative_error = new_real_error - real_error;
|
|
real_error = new_real_error;
|
|
|
|
// Prevent integral windup
|
|
if (ki != 0.0f && !IsCalibrated(0.05f)) {
|
|
integral_error += real_error;
|
|
} else {
|
|
integral_error = {};
|
|
}
|
|
|
|
// Apply feedback terms
|
|
if (!only_accelerometer) {
|
|
rad_gyro += kp * real_error;
|
|
rad_gyro += ki * integral_error;
|
|
rad_gyro += kd * derivative_error;
|
|
} else {
|
|
// Give more weight to accelerometer values to compensate for the lack of gyro
|
|
rad_gyro += 35.0f * kp * real_error;
|
|
rad_gyro += 10.0f * ki * integral_error;
|
|
rad_gyro += 10.0f * kd * derivative_error;
|
|
|
|
// Emulate gyro values for games that need them
|
|
gyro.x = -rad_gyro.y;
|
|
gyro.y = rad_gyro.x;
|
|
gyro.z = -rad_gyro.z;
|
|
UpdateRotation(elapsed_time);
|
|
}
|
|
}
|
|
|
|
const f32 gx = rad_gyro.y;
|
|
const f32 gy = rad_gyro.x;
|
|
const f32 gz = rad_gyro.z;
|
|
|
|
// Integrate rate of change of quaternion
|
|
const f32 pa = q2;
|
|
const f32 pb = q3;
|
|
const f32 pc = q4;
|
|
q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period);
|
|
q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period);
|
|
q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period);
|
|
q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period);
|
|
|
|
quat.w = q1;
|
|
quat.xyz[0] = q2;
|
|
quat.xyz[1] = q3;
|
|
quat.xyz[2] = q4;
|
|
quat = quat.Normalized();
|
|
}
|
|
|
|
std::array<Common::Vec3f, 3> MotionInput::GetOrientation() const {
|
|
const Common::Quaternion<float> quad{
|
|
.xyz = {-quat.xyz[1], -quat.xyz[0], -quat.w},
|
|
.w = -quat.xyz[2],
|
|
};
|
|
const std::array<float, 16> matrix4x4 = quad.ToMatrix();
|
|
|
|
return {Common::Vec3f(matrix4x4[0], matrix4x4[1], -matrix4x4[2]),
|
|
Common::Vec3f(matrix4x4[4], matrix4x4[5], -matrix4x4[6]),
|
|
Common::Vec3f(-matrix4x4[8], -matrix4x4[9], matrix4x4[10])};
|
|
}
|
|
|
|
Common::Vec3f MotionInput::GetAcceleration() const {
|
|
return accel;
|
|
}
|
|
|
|
Common::Vec3f MotionInput::GetGyroscope() const {
|
|
return gyro;
|
|
}
|
|
|
|
Common::Vec3f MotionInput::GetGyroBias() const {
|
|
return gyro_bias;
|
|
}
|
|
|
|
Common::Quaternion<f32> MotionInput::GetQuaternion() const {
|
|
return quat;
|
|
}
|
|
|
|
Common::Vec3f MotionInput::GetRotations() const {
|
|
return rotations;
|
|
}
|
|
|
|
Common::Vec3f MotionInput::GetEulerAngles() const {
|
|
// roll (x-axis rotation)
|
|
const float sinr_cosp = 2 * (quat.w * quat.xyz.x + quat.xyz.y * quat.xyz.z);
|
|
const float cosr_cosp = 1 - 2 * (quat.xyz.x * quat.xyz.x + quat.xyz.y * quat.xyz.y);
|
|
|
|
// pitch (y-axis rotation)
|
|
const float sinp = std::sqrt(1 + 2 * (quat.w * quat.xyz.y - quat.xyz.x * quat.xyz.z));
|
|
const float cosp = std::sqrt(1 - 2 * (quat.w * quat.xyz.y - quat.xyz.x * quat.xyz.z));
|
|
|
|
// yaw (z-axis rotation)
|
|
const float siny_cosp = 2 * (quat.w * quat.xyz.z + quat.xyz.x * quat.xyz.y);
|
|
const float cosy_cosp = 1 - 2 * (quat.xyz.y * quat.xyz.y + quat.xyz.z * quat.xyz.z);
|
|
|
|
return {
|
|
std::atan2(sinr_cosp, cosr_cosp),
|
|
2 * std::atan2(sinp, cosp) - Common::PI / 2,
|
|
std::atan2(siny_cosp, cosy_cosp),
|
|
};
|
|
}
|
|
|
|
void MotionInput::ResetOrientation() {
|
|
if (!reset_enabled || only_accelerometer) {
|
|
return;
|
|
}
|
|
if (!IsMoving(IsAtRestRelaxed) && accel.z <= -0.9f) {
|
|
++reset_counter;
|
|
if (reset_counter > 900) {
|
|
quat.w = 0;
|
|
quat.xyz[0] = 0;
|
|
quat.xyz[1] = 0;
|
|
quat.xyz[2] = -1;
|
|
SetOrientationFromAccelerometer();
|
|
integral_error = {};
|
|
reset_counter = 0;
|
|
}
|
|
} else {
|
|
reset_counter = 0;
|
|
}
|
|
}
|
|
|
|
void MotionInput::SetOrientationFromAccelerometer() {
|
|
int iterations = 0;
|
|
const f32 sample_period = 0.015f;
|
|
|
|
const auto normal_accel = accel.Normalized();
|
|
|
|
while (!IsCalibrated(0.01f) && ++iterations < 100) {
|
|
// Short name local variable for readability
|
|
f32 q1 = quat.w;
|
|
f32 q2 = quat.xyz[0];
|
|
f32 q3 = quat.xyz[1];
|
|
f32 q4 = quat.xyz[2];
|
|
|
|
Common::Vec3f rad_gyro;
|
|
const f32 ax = -normal_accel.x;
|
|
const f32 ay = normal_accel.y;
|
|
const f32 az = -normal_accel.z;
|
|
|
|
// Estimated direction of gravity
|
|
const f32 vx = 2.0f * (q2 * q4 - q1 * q3);
|
|
const f32 vy = 2.0f * (q1 * q2 + q3 * q4);
|
|
const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;
|
|
|
|
// Error is cross product between estimated direction and measured direction of gravity
|
|
const Common::Vec3f new_real_error = {
|
|
az * vx - ax * vz,
|
|
ay * vz - az * vy,
|
|
ax * vy - ay * vx,
|
|
};
|
|
|
|
derivative_error = new_real_error - real_error;
|
|
real_error = new_real_error;
|
|
|
|
rad_gyro += 10.0f * kp * real_error;
|
|
rad_gyro += 5.0f * ki * integral_error;
|
|
rad_gyro += 10.0f * kd * derivative_error;
|
|
|
|
const f32 gx = rad_gyro.y;
|
|
const f32 gy = rad_gyro.x;
|
|
const f32 gz = rad_gyro.z;
|
|
|
|
// Integrate rate of change of quaternion
|
|
const f32 pa = q2;
|
|
const f32 pb = q3;
|
|
const f32 pc = q4;
|
|
q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period);
|
|
q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period);
|
|
q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period);
|
|
q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period);
|
|
|
|
quat.w = q1;
|
|
quat.xyz[0] = q2;
|
|
quat.xyz[1] = q3;
|
|
quat.xyz[2] = q4;
|
|
quat = quat.Normalized();
|
|
}
|
|
}
|
|
} // namespace Core::HID
|