mirror of
https://github.com/pineappleEA/pineapple-src.git
synced 2024-12-07 22:18:27 -05:00
118 lines
4.2 KiB
C
Executable File
118 lines
4.2 KiB
C
Executable File
/*
|
|
* (I)RDFT transforms
|
|
* Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include "libavutil/mathematics.h"
|
|
#include "rdft.h"
|
|
|
|
/**
|
|
* @file
|
|
* (Inverse) Real Discrete Fourier Transforms.
|
|
*/
|
|
|
|
/** Map one real FFT into two parallel real even and odd FFTs. Then interleave
|
|
* the two real FFTs into one complex FFT. Unmangle the results.
|
|
* ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
|
|
*/
|
|
static void rdft_calc_c(RDFTContext *s, FFTSample *data)
|
|
{
|
|
int i, i1, i2;
|
|
FFTComplex ev, od, odsum;
|
|
const int n = 1 << s->nbits;
|
|
const float k1 = 0.5;
|
|
const float k2 = 0.5 - s->inverse;
|
|
const FFTSample *tcos = s->tcos;
|
|
const FFTSample *tsin = s->tsin;
|
|
|
|
if (!s->inverse) {
|
|
s->fft.fft_permute(&s->fft, (FFTComplex*)data);
|
|
s->fft.fft_calc(&s->fft, (FFTComplex*)data);
|
|
}
|
|
/* i=0 is a special case because of packing, the DC term is real, so we
|
|
are going to throw the N/2 term (also real) in with it. */
|
|
ev.re = data[0];
|
|
data[0] = ev.re+data[1];
|
|
data[1] = ev.re-data[1];
|
|
|
|
#define RDFT_UNMANGLE(sign0, sign1) \
|
|
for (i = 1; i < (n>>2); i++) { \
|
|
i1 = 2*i; \
|
|
i2 = n-i1; \
|
|
/* Separate even and odd FFTs */ \
|
|
ev.re = k1*(data[i1 ]+data[i2 ]); \
|
|
od.im = k2*(data[i2 ]-data[i1 ]); \
|
|
ev.im = k1*(data[i1+1]-data[i2+1]); \
|
|
od.re = k2*(data[i1+1]+data[i2+1]); \
|
|
/* Apply twiddle factors to the odd FFT and add to the even FFT */ \
|
|
odsum.re = od.re*tcos[i] sign0 od.im*tsin[i]; \
|
|
odsum.im = od.im*tcos[i] sign1 od.re*tsin[i]; \
|
|
data[i1 ] = ev.re + odsum.re; \
|
|
data[i1+1] = ev.im + odsum.im; \
|
|
data[i2 ] = ev.re - odsum.re; \
|
|
data[i2+1] = odsum.im - ev.im; \
|
|
}
|
|
|
|
if (s->negative_sin) {
|
|
RDFT_UNMANGLE(+,-)
|
|
} else {
|
|
RDFT_UNMANGLE(-,+)
|
|
}
|
|
|
|
data[2*i+1]=s->sign_convention*data[2*i+1];
|
|
if (s->inverse) {
|
|
data[0] *= k1;
|
|
data[1] *= k1;
|
|
s->fft.fft_permute(&s->fft, (FFTComplex*)data);
|
|
s->fft.fft_calc(&s->fft, (FFTComplex*)data);
|
|
}
|
|
}
|
|
|
|
av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
|
|
{
|
|
int n = 1 << nbits;
|
|
int ret;
|
|
|
|
s->nbits = nbits;
|
|
s->inverse = trans == IDFT_C2R || trans == DFT_C2R;
|
|
s->sign_convention = trans == IDFT_R2C || trans == DFT_C2R ? 1 : -1;
|
|
s->negative_sin = trans == DFT_C2R || trans == DFT_R2C;
|
|
|
|
if (nbits < 4 || nbits > 16)
|
|
return AVERROR(EINVAL);
|
|
|
|
if ((ret = ff_fft_init(&s->fft, nbits-1, trans == IDFT_C2R || trans == IDFT_R2C)) < 0)
|
|
return ret;
|
|
|
|
ff_init_ff_cos_tabs(nbits);
|
|
s->tcos = ff_cos_tabs[nbits];
|
|
s->tsin = ff_cos_tabs[nbits] + (n >> 2);
|
|
s->rdft_calc = rdft_calc_c;
|
|
|
|
if (ARCH_ARM) ff_rdft_init_arm(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
av_cold void ff_rdft_end(RDFTContext *s)
|
|
{
|
|
ff_fft_end(&s->fft);
|
|
}
|