mirror of
https://github.com/pineappleEA/pineapple-src.git
synced 2024-12-05 14:28:24 -05:00
464 lines
14 KiB
C
Executable File
464 lines
14 KiB
C
Executable File
/*
|
|
* Copyright (C) 2007 Vitor Sessak <vitor1001@gmail.com>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Codebook Generator using the ELBG algorithm
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "libavutil/avassert.h"
|
|
#include "libavutil/common.h"
|
|
#include "libavutil/lfg.h"
|
|
#include "elbg.h"
|
|
#include "avcodec.h"
|
|
|
|
#define DELTA_ERR_MAX 0.1 ///< Precision of the ELBG algorithm (as percentage error)
|
|
|
|
/**
|
|
* In the ELBG jargon, a cell is the set of points that are closest to a
|
|
* codebook entry. Not to be confused with a RoQ Video cell. */
|
|
typedef struct cell_s {
|
|
int index;
|
|
struct cell_s *next;
|
|
} cell;
|
|
|
|
/**
|
|
* ELBG internal data
|
|
*/
|
|
typedef struct elbg_data {
|
|
int error;
|
|
int dim;
|
|
int numCB;
|
|
int *codebook;
|
|
cell **cells;
|
|
int *utility;
|
|
int64_t *utility_inc;
|
|
int *nearest_cb;
|
|
int *points;
|
|
AVLFG *rand_state;
|
|
int *scratchbuf;
|
|
} elbg_data;
|
|
|
|
static inline int distance_limited(int *a, int *b, int dim, int limit)
|
|
{
|
|
int i, dist=0;
|
|
for (i=0; i<dim; i++) {
|
|
dist += (a[i] - b[i])*(a[i] - b[i]);
|
|
if (dist > limit)
|
|
return INT_MAX;
|
|
}
|
|
|
|
return dist;
|
|
}
|
|
|
|
static inline void vect_division(int *res, int *vect, int div, int dim)
|
|
{
|
|
int i;
|
|
if (div > 1)
|
|
for (i=0; i<dim; i++)
|
|
res[i] = ROUNDED_DIV(vect[i],div);
|
|
else if (res != vect)
|
|
memcpy(res, vect, dim*sizeof(int));
|
|
|
|
}
|
|
|
|
static int eval_error_cell(elbg_data *elbg, int *centroid, cell *cells)
|
|
{
|
|
int error=0;
|
|
for (; cells; cells=cells->next)
|
|
error += distance_limited(centroid, elbg->points + cells->index*elbg->dim, elbg->dim, INT_MAX);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int get_closest_codebook(elbg_data *elbg, int index)
|
|
{
|
|
int i, pick=0, diff, diff_min = INT_MAX;
|
|
for (i=0; i<elbg->numCB; i++)
|
|
if (i != index) {
|
|
diff = distance_limited(elbg->codebook + i*elbg->dim, elbg->codebook + index*elbg->dim, elbg->dim, diff_min);
|
|
if (diff < diff_min) {
|
|
pick = i;
|
|
diff_min = diff;
|
|
}
|
|
}
|
|
return pick;
|
|
}
|
|
|
|
static int get_high_utility_cell(elbg_data *elbg)
|
|
{
|
|
int i=0;
|
|
/* Using linear search, do binary if it ever turns to be speed critical */
|
|
uint64_t r;
|
|
|
|
if (elbg->utility_inc[elbg->numCB-1] < INT_MAX) {
|
|
r = av_lfg_get(elbg->rand_state) % (unsigned int)elbg->utility_inc[elbg->numCB-1] + 1;
|
|
} else {
|
|
r = av_lfg_get(elbg->rand_state);
|
|
r = (av_lfg_get(elbg->rand_state) + (r<<32)) % elbg->utility_inc[elbg->numCB-1] + 1;
|
|
}
|
|
|
|
while (elbg->utility_inc[i] < r) {
|
|
i++;
|
|
}
|
|
|
|
av_assert2(elbg->cells[i]);
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* Implementation of the simple LBG algorithm for just two codebooks
|
|
*/
|
|
static int simple_lbg(elbg_data *elbg,
|
|
int dim,
|
|
int *centroid[3],
|
|
int newutility[3],
|
|
int *points,
|
|
cell *cells)
|
|
{
|
|
int i, idx;
|
|
int numpoints[2] = {0,0};
|
|
int *newcentroid[2] = {
|
|
elbg->scratchbuf + 3*dim,
|
|
elbg->scratchbuf + 4*dim
|
|
};
|
|
cell *tempcell;
|
|
|
|
memset(newcentroid[0], 0, 2 * dim * sizeof(*newcentroid[0]));
|
|
|
|
newutility[0] =
|
|
newutility[1] = 0;
|
|
|
|
for (tempcell = cells; tempcell; tempcell=tempcell->next) {
|
|
idx = distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX)>=
|
|
distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX);
|
|
numpoints[idx]++;
|
|
for (i=0; i<dim; i++)
|
|
newcentroid[idx][i] += points[tempcell->index*dim + i];
|
|
}
|
|
|
|
vect_division(centroid[0], newcentroid[0], numpoints[0], dim);
|
|
vect_division(centroid[1], newcentroid[1], numpoints[1], dim);
|
|
|
|
for (tempcell = cells; tempcell; tempcell=tempcell->next) {
|
|
int dist[2] = {distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX),
|
|
distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX)};
|
|
int idx = dist[0] > dist[1];
|
|
newutility[idx] += dist[idx];
|
|
}
|
|
|
|
return newutility[0] + newutility[1];
|
|
}
|
|
|
|
static void get_new_centroids(elbg_data *elbg, int huc, int *newcentroid_i,
|
|
int *newcentroid_p)
|
|
{
|
|
cell *tempcell;
|
|
int *min = newcentroid_i;
|
|
int *max = newcentroid_p;
|
|
int i;
|
|
|
|
for (i=0; i< elbg->dim; i++) {
|
|
min[i]=INT_MAX;
|
|
max[i]=0;
|
|
}
|
|
|
|
for (tempcell = elbg->cells[huc]; tempcell; tempcell = tempcell->next)
|
|
for(i=0; i<elbg->dim; i++) {
|
|
min[i]=FFMIN(min[i], elbg->points[tempcell->index*elbg->dim + i]);
|
|
max[i]=FFMAX(max[i], elbg->points[tempcell->index*elbg->dim + i]);
|
|
}
|
|
|
|
for (i=0; i<elbg->dim; i++) {
|
|
int ni = min[i] + (max[i] - min[i])/3;
|
|
int np = min[i] + (2*(max[i] - min[i]))/3;
|
|
newcentroid_i[i] = ni;
|
|
newcentroid_p[i] = np;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Add the points in the low utility cell to its closest cell. Split the high
|
|
* utility cell, putting the separated points in the (now empty) low utility
|
|
* cell.
|
|
*
|
|
* @param elbg Internal elbg data
|
|
* @param indexes {luc, huc, cluc}
|
|
* @param newcentroid A vector with the position of the new centroids
|
|
*/
|
|
static void shift_codebook(elbg_data *elbg, int *indexes,
|
|
int *newcentroid[3])
|
|
{
|
|
cell *tempdata;
|
|
cell **pp = &elbg->cells[indexes[2]];
|
|
|
|
while(*pp)
|
|
pp= &(*pp)->next;
|
|
|
|
*pp = elbg->cells[indexes[0]];
|
|
|
|
elbg->cells[indexes[0]] = NULL;
|
|
tempdata = elbg->cells[indexes[1]];
|
|
elbg->cells[indexes[1]] = NULL;
|
|
|
|
while(tempdata) {
|
|
cell *tempcell2 = tempdata->next;
|
|
int idx = distance_limited(elbg->points + tempdata->index*elbg->dim,
|
|
newcentroid[0], elbg->dim, INT_MAX) >
|
|
distance_limited(elbg->points + tempdata->index*elbg->dim,
|
|
newcentroid[1], elbg->dim, INT_MAX);
|
|
|
|
tempdata->next = elbg->cells[indexes[idx]];
|
|
elbg->cells[indexes[idx]] = tempdata;
|
|
tempdata = tempcell2;
|
|
}
|
|
}
|
|
|
|
static void evaluate_utility_inc(elbg_data *elbg)
|
|
{
|
|
int i;
|
|
int64_t inc=0;
|
|
|
|
for (i=0; i < elbg->numCB; i++) {
|
|
if (elbg->numCB*elbg->utility[i] > elbg->error)
|
|
inc += elbg->utility[i];
|
|
elbg->utility_inc[i] = inc;
|
|
}
|
|
}
|
|
|
|
|
|
static void update_utility_and_n_cb(elbg_data *elbg, int idx, int newutility)
|
|
{
|
|
cell *tempcell;
|
|
|
|
elbg->utility[idx] = newutility;
|
|
for (tempcell=elbg->cells[idx]; tempcell; tempcell=tempcell->next)
|
|
elbg->nearest_cb[tempcell->index] = idx;
|
|
}
|
|
|
|
/**
|
|
* Evaluate if a shift lower the error. If it does, call shift_codebooks
|
|
* and update elbg->error, elbg->utility and elbg->nearest_cb.
|
|
*
|
|
* @param elbg Internal elbg data
|
|
* @param idx {luc (low utility cell, huc (high utility cell), cluc (closest cell to low utility cell)}
|
|
*/
|
|
static void try_shift_candidate(elbg_data *elbg, int idx[3])
|
|
{
|
|
int j, k, olderror=0, newerror, cont=0;
|
|
int newutility[3];
|
|
int *newcentroid[3] = {
|
|
elbg->scratchbuf,
|
|
elbg->scratchbuf + elbg->dim,
|
|
elbg->scratchbuf + 2*elbg->dim
|
|
};
|
|
cell *tempcell;
|
|
|
|
for (j=0; j<3; j++)
|
|
olderror += elbg->utility[idx[j]];
|
|
|
|
memset(newcentroid[2], 0, elbg->dim*sizeof(int));
|
|
|
|
for (k=0; k<2; k++)
|
|
for (tempcell=elbg->cells[idx[2*k]]; tempcell; tempcell=tempcell->next) {
|
|
cont++;
|
|
for (j=0; j<elbg->dim; j++)
|
|
newcentroid[2][j] += elbg->points[tempcell->index*elbg->dim + j];
|
|
}
|
|
|
|
vect_division(newcentroid[2], newcentroid[2], cont, elbg->dim);
|
|
|
|
get_new_centroids(elbg, idx[1], newcentroid[0], newcentroid[1]);
|
|
|
|
newutility[2] = eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[0]]);
|
|
newutility[2] += eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[2]]);
|
|
|
|
newerror = newutility[2];
|
|
|
|
newerror += simple_lbg(elbg, elbg->dim, newcentroid, newutility, elbg->points,
|
|
elbg->cells[idx[1]]);
|
|
|
|
if (olderror > newerror) {
|
|
shift_codebook(elbg, idx, newcentroid);
|
|
|
|
elbg->error += newerror - olderror;
|
|
|
|
for (j=0; j<3; j++)
|
|
update_utility_and_n_cb(elbg, idx[j], newutility[j]);
|
|
|
|
evaluate_utility_inc(elbg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Implementation of the ELBG block
|
|
*/
|
|
static void do_shiftings(elbg_data *elbg)
|
|
{
|
|
int idx[3];
|
|
|
|
evaluate_utility_inc(elbg);
|
|
|
|
for (idx[0]=0; idx[0] < elbg->numCB; idx[0]++)
|
|
if (elbg->numCB*elbg->utility[idx[0]] < elbg->error) {
|
|
if (elbg->utility_inc[elbg->numCB-1] == 0)
|
|
return;
|
|
|
|
idx[1] = get_high_utility_cell(elbg);
|
|
idx[2] = get_closest_codebook(elbg, idx[0]);
|
|
|
|
if (idx[1] != idx[0] && idx[1] != idx[2])
|
|
try_shift_candidate(elbg, idx);
|
|
}
|
|
}
|
|
|
|
#define BIG_PRIME 433494437LL
|
|
|
|
int avpriv_init_elbg(int *points, int dim, int numpoints, int *codebook,
|
|
int numCB, int max_steps, int *closest_cb,
|
|
AVLFG *rand_state)
|
|
{
|
|
int i, k, ret = 0;
|
|
|
|
if (numpoints > 24*numCB) {
|
|
/* ELBG is very costly for a big number of points. So if we have a lot
|
|
of them, get a good initial codebook to save on iterations */
|
|
int *temp_points = av_malloc_array(dim, (numpoints/8)*sizeof(int));
|
|
if (!temp_points)
|
|
return AVERROR(ENOMEM);
|
|
for (i=0; i<numpoints/8; i++) {
|
|
k = (i*BIG_PRIME) % numpoints;
|
|
memcpy(temp_points + i*dim, points + k*dim, dim*sizeof(int));
|
|
}
|
|
|
|
ret = avpriv_init_elbg(temp_points, dim, numpoints / 8, codebook,
|
|
numCB, 2 * max_steps, closest_cb, rand_state);
|
|
if (ret < 0) {
|
|
av_freep(&temp_points);
|
|
return ret;
|
|
}
|
|
ret = avpriv_do_elbg(temp_points, dim, numpoints / 8, codebook,
|
|
numCB, 2 * max_steps, closest_cb, rand_state);
|
|
av_free(temp_points);
|
|
|
|
} else // If not, initialize the codebook with random positions
|
|
for (i=0; i < numCB; i++)
|
|
memcpy(codebook + i*dim, points + ((i*BIG_PRIME)%numpoints)*dim,
|
|
dim*sizeof(int));
|
|
return ret;
|
|
}
|
|
|
|
int avpriv_do_elbg(int *points, int dim, int numpoints, int *codebook,
|
|
int numCB, int max_steps, int *closest_cb,
|
|
AVLFG *rand_state)
|
|
{
|
|
int dist;
|
|
elbg_data elbg_d;
|
|
elbg_data *elbg = &elbg_d;
|
|
int i, j, k, last_error, steps = 0, ret = 0;
|
|
int *dist_cb = av_malloc_array(numpoints, sizeof(int));
|
|
int *size_part = av_malloc_array(numCB, sizeof(int));
|
|
cell *list_buffer = av_malloc_array(numpoints, sizeof(cell));
|
|
cell *free_cells;
|
|
int best_dist, best_idx = 0;
|
|
|
|
elbg->error = INT_MAX;
|
|
elbg->dim = dim;
|
|
elbg->numCB = numCB;
|
|
elbg->codebook = codebook;
|
|
elbg->cells = av_malloc_array(numCB, sizeof(cell *));
|
|
elbg->utility = av_malloc_array(numCB, sizeof(int));
|
|
elbg->nearest_cb = closest_cb;
|
|
elbg->points = points;
|
|
elbg->utility_inc = av_malloc_array(numCB, sizeof(*elbg->utility_inc));
|
|
elbg->scratchbuf = av_malloc_array(5*dim, sizeof(int));
|
|
|
|
if (!dist_cb || !size_part || !list_buffer || !elbg->cells ||
|
|
!elbg->utility || !elbg->utility_inc || !elbg->scratchbuf) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto out;
|
|
}
|
|
|
|
elbg->rand_state = rand_state;
|
|
|
|
do {
|
|
free_cells = list_buffer;
|
|
last_error = elbg->error;
|
|
steps++;
|
|
memset(elbg->utility, 0, numCB*sizeof(int));
|
|
memset(elbg->cells, 0, numCB*sizeof(cell *));
|
|
|
|
elbg->error = 0;
|
|
|
|
/* This loop evaluate the actual Voronoi partition. It is the most
|
|
costly part of the algorithm. */
|
|
for (i=0; i < numpoints; i++) {
|
|
best_dist = distance_limited(elbg->points + i*elbg->dim, elbg->codebook + best_idx*elbg->dim, dim, INT_MAX);
|
|
for (k=0; k < elbg->numCB; k++) {
|
|
dist = distance_limited(elbg->points + i*elbg->dim, elbg->codebook + k*elbg->dim, dim, best_dist);
|
|
if (dist < best_dist) {
|
|
best_dist = dist;
|
|
best_idx = k;
|
|
}
|
|
}
|
|
elbg->nearest_cb[i] = best_idx;
|
|
dist_cb[i] = best_dist;
|
|
elbg->error += dist_cb[i];
|
|
elbg->utility[elbg->nearest_cb[i]] += dist_cb[i];
|
|
free_cells->index = i;
|
|
free_cells->next = elbg->cells[elbg->nearest_cb[i]];
|
|
elbg->cells[elbg->nearest_cb[i]] = free_cells;
|
|
free_cells++;
|
|
}
|
|
|
|
do_shiftings(elbg);
|
|
|
|
memset(size_part, 0, numCB*sizeof(int));
|
|
|
|
memset(elbg->codebook, 0, elbg->numCB*dim*sizeof(int));
|
|
|
|
for (i=0; i < numpoints; i++) {
|
|
size_part[elbg->nearest_cb[i]]++;
|
|
for (j=0; j < elbg->dim; j++)
|
|
elbg->codebook[elbg->nearest_cb[i]*elbg->dim + j] +=
|
|
elbg->points[i*elbg->dim + j];
|
|
}
|
|
|
|
for (i=0; i < elbg->numCB; i++)
|
|
vect_division(elbg->codebook + i*elbg->dim,
|
|
elbg->codebook + i*elbg->dim, size_part[i], elbg->dim);
|
|
|
|
} while(((last_error - elbg->error) > DELTA_ERR_MAX*elbg->error) &&
|
|
(steps < max_steps));
|
|
|
|
out:
|
|
av_free(dist_cb);
|
|
av_free(size_part);
|
|
av_free(elbg->utility);
|
|
av_free(list_buffer);
|
|
av_free(elbg->cells);
|
|
av_free(elbg->utility_inc);
|
|
av_free(elbg->scratchbuf);
|
|
return ret;
|
|
}
|