mirror of
https://github.com/pineappleEA/pineapple-src.git
synced 2024-11-29 08:08:24 -05:00
1259 lines
28 KiB
C
Executable File
1259 lines
28 KiB
C
Executable File
/* $OpenBSD: ec_lib.c,v 1.32 2019/09/29 10:09:09 tb Exp $ */
|
|
/*
|
|
* Originally written by Bodo Moeller for the OpenSSL project.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
* Binary polynomial ECC support in OpenSSL originally developed by
|
|
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/opensslconf.h>
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/opensslv.h>
|
|
|
|
#include "bn_lcl.h"
|
|
#include "ec_lcl.h"
|
|
|
|
/* functions for EC_GROUP objects */
|
|
|
|
EC_GROUP *
|
|
EC_GROUP_new(const EC_METHOD * meth)
|
|
{
|
|
EC_GROUP *ret;
|
|
|
|
if (meth == NULL) {
|
|
ECerror(EC_R_SLOT_FULL);
|
|
return NULL;
|
|
}
|
|
if (meth->group_init == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return NULL;
|
|
}
|
|
ret = malloc(sizeof *ret);
|
|
if (ret == NULL) {
|
|
ECerror(ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
ret->meth = meth;
|
|
|
|
ret->extra_data = NULL;
|
|
|
|
ret->generator = NULL;
|
|
BN_init(&ret->order);
|
|
BN_init(&ret->cofactor);
|
|
|
|
ret->curve_name = 0;
|
|
ret->asn1_flag = 0;
|
|
ret->asn1_form = POINT_CONVERSION_UNCOMPRESSED;
|
|
|
|
ret->seed = NULL;
|
|
ret->seed_len = 0;
|
|
|
|
if (!meth->group_init(ret)) {
|
|
free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
void
|
|
EC_GROUP_free(EC_GROUP * group)
|
|
{
|
|
if (!group)
|
|
return;
|
|
|
|
if (group->meth->group_finish != 0)
|
|
group->meth->group_finish(group);
|
|
|
|
EC_EX_DATA_free_all_data(&group->extra_data);
|
|
|
|
EC_POINT_free(group->generator);
|
|
BN_free(&group->order);
|
|
BN_free(&group->cofactor);
|
|
|
|
free(group->seed);
|
|
|
|
free(group);
|
|
}
|
|
|
|
|
|
void
|
|
EC_GROUP_clear_free(EC_GROUP * group)
|
|
{
|
|
if (!group)
|
|
return;
|
|
|
|
if (group->meth->group_clear_finish != 0)
|
|
group->meth->group_clear_finish(group);
|
|
else if (group->meth->group_finish != 0)
|
|
group->meth->group_finish(group);
|
|
|
|
EC_EX_DATA_clear_free_all_data(&group->extra_data);
|
|
|
|
EC_POINT_clear_free(group->generator);
|
|
BN_clear_free(&group->order);
|
|
BN_clear_free(&group->cofactor);
|
|
|
|
freezero(group->seed, group->seed_len);
|
|
freezero(group, sizeof *group);
|
|
}
|
|
|
|
|
|
int
|
|
EC_GROUP_copy(EC_GROUP * dest, const EC_GROUP * src)
|
|
{
|
|
EC_EXTRA_DATA *d;
|
|
|
|
if (dest->meth->group_copy == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (dest->meth != src->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
if (dest == src)
|
|
return 1;
|
|
|
|
EC_EX_DATA_free_all_data(&dest->extra_data);
|
|
|
|
for (d = src->extra_data; d != NULL; d = d->next) {
|
|
void *t = d->dup_func(d->data);
|
|
|
|
if (t == NULL)
|
|
return 0;
|
|
if (!EC_EX_DATA_set_data(&dest->extra_data, t, d->dup_func,
|
|
d->free_func, d->clear_free_func))
|
|
return 0;
|
|
}
|
|
|
|
if (src->generator != NULL) {
|
|
if (dest->generator == NULL) {
|
|
dest->generator = EC_POINT_new(dest);
|
|
if (dest->generator == NULL)
|
|
return 0;
|
|
}
|
|
if (!EC_POINT_copy(dest->generator, src->generator))
|
|
return 0;
|
|
} else {
|
|
/* src->generator == NULL */
|
|
EC_POINT_clear_free(dest->generator);
|
|
dest->generator = NULL;
|
|
}
|
|
|
|
if (!BN_copy(&dest->order, &src->order))
|
|
return 0;
|
|
if (!BN_copy(&dest->cofactor, &src->cofactor))
|
|
return 0;
|
|
|
|
dest->curve_name = src->curve_name;
|
|
dest->asn1_flag = src->asn1_flag;
|
|
dest->asn1_form = src->asn1_form;
|
|
|
|
if (src->seed) {
|
|
free(dest->seed);
|
|
dest->seed = malloc(src->seed_len);
|
|
if (dest->seed == NULL)
|
|
return 0;
|
|
memcpy(dest->seed, src->seed, src->seed_len);
|
|
dest->seed_len = src->seed_len;
|
|
} else {
|
|
free(dest->seed);
|
|
dest->seed = NULL;
|
|
dest->seed_len = 0;
|
|
}
|
|
|
|
|
|
return dest->meth->group_copy(dest, src);
|
|
}
|
|
|
|
|
|
EC_GROUP *
|
|
EC_GROUP_dup(const EC_GROUP * a)
|
|
{
|
|
EC_GROUP *t = NULL;
|
|
|
|
if ((a != NULL) && ((t = EC_GROUP_new(a->meth)) != NULL) &&
|
|
(!EC_GROUP_copy(t, a))) {
|
|
EC_GROUP_free(t);
|
|
t = NULL;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
|
|
const EC_METHOD *
|
|
EC_GROUP_method_of(const EC_GROUP *group)
|
|
{
|
|
return group->meth;
|
|
}
|
|
|
|
|
|
int
|
|
EC_METHOD_get_field_type(const EC_METHOD *meth)
|
|
{
|
|
return meth->field_type;
|
|
}
|
|
|
|
/*
|
|
* Try computing the cofactor from generator order n and field cardinality q.
|
|
* This works for all curves of cryptographic interest.
|
|
*
|
|
* Hasse's theorem: | h * n - (q + 1) | <= 2 * sqrt(q)
|
|
*
|
|
* So: h_min = (q + 1 - 2*sqrt(q)) / n and h_max = (q + 1 + 2*sqrt(q)) / n and
|
|
* therefore h_max - h_min = 4*sqrt(q) / n. So if n > 4*sqrt(q) holds, there is
|
|
* only one possible value for h:
|
|
*
|
|
* h = \lfloor (h_min + h_max)/2 \rceil = \lfloor (q + 1)/n \rceil
|
|
*
|
|
* Otherwise, zero cofactor and return success.
|
|
*/
|
|
static int
|
|
ec_guess_cofactor(EC_GROUP *group)
|
|
{
|
|
BN_CTX *ctx = NULL;
|
|
BIGNUM *q = NULL;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* If the cofactor is too large, we cannot guess it and default to zero.
|
|
* The RHS of below is a strict overestimate of log(4 * sqrt(q)).
|
|
*/
|
|
if (BN_num_bits(&group->order) <=
|
|
(BN_num_bits(&group->field) + 1) / 2 + 3) {
|
|
BN_zero(&group->cofactor);
|
|
return 1;
|
|
}
|
|
|
|
if ((ctx = BN_CTX_new()) == NULL)
|
|
goto err;
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((q = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
/* Set q = 2**m for binary fields; q = p otherwise. */
|
|
if (group->meth->field_type == NID_X9_62_characteristic_two_field) {
|
|
BN_zero(q);
|
|
if (!BN_set_bit(q, BN_num_bits(&group->field) - 1))
|
|
goto err;
|
|
} else {
|
|
if (!BN_copy(q, &group->field))
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Compute
|
|
* h = \lfloor (q + 1)/n \rceil = \lfloor (q + 1 + n/2) / n \rfloor.
|
|
*/
|
|
|
|
/* h = n/2 */
|
|
if (!BN_rshift1(&group->cofactor, &group->order))
|
|
goto err;
|
|
/* h = 1 + n/2 */
|
|
if (!BN_add(&group->cofactor, &group->cofactor, BN_value_one()))
|
|
goto err;
|
|
/* h = q + 1 + n/2 */
|
|
if (!BN_add(&group->cofactor, &group->cofactor, q))
|
|
goto err;
|
|
/* h = (q + 1 + n/2) / n */
|
|
if (!BN_div_ct(&group->cofactor, NULL, &group->cofactor, &group->order,
|
|
ctx))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx);
|
|
BN_zero(&group->cofactor);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
|
|
const BIGNUM *order, const BIGNUM *cofactor)
|
|
{
|
|
if (generator == NULL) {
|
|
ECerror(ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
|
|
/* Require group->field >= 1. */
|
|
if (BN_is_zero(&group->field) || BN_is_negative(&group->field)) {
|
|
ECerror(EC_R_INVALID_FIELD);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Require order >= 1 and enforce an upper bound of at most one bit more
|
|
* than the field cardinality due to Hasse's theorem.
|
|
*/
|
|
if (order == NULL || BN_is_zero(order) || BN_is_negative(order) ||
|
|
BN_num_bits(order) > BN_num_bits(&group->field) + 1) {
|
|
ECerror(EC_R_INVALID_GROUP_ORDER);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Unfortunately, the cofactor is an optional field in many standards.
|
|
* Internally, the library uses a 0 cofactor as a marker for "unknown
|
|
* cofactor". So accept cofactor == NULL or cofactor >= 0.
|
|
*/
|
|
if (cofactor != NULL && BN_is_negative(cofactor)) {
|
|
ECerror(EC_R_UNKNOWN_COFACTOR);
|
|
return 0;
|
|
}
|
|
|
|
if (group->generator == NULL) {
|
|
group->generator = EC_POINT_new(group);
|
|
if (group->generator == NULL)
|
|
return 0;
|
|
}
|
|
if (!EC_POINT_copy(group->generator, generator))
|
|
return 0;
|
|
|
|
if (!BN_copy(&group->order, order))
|
|
return 0;
|
|
|
|
/* Either take the provided positive cofactor, or try to compute it. */
|
|
if (cofactor != NULL && !BN_is_zero(cofactor)) {
|
|
if (!BN_copy(&group->cofactor, cofactor))
|
|
return 0;
|
|
} else if (!ec_guess_cofactor(group))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
const EC_POINT *
|
|
EC_GROUP_get0_generator(const EC_GROUP *group)
|
|
{
|
|
return group->generator;
|
|
}
|
|
|
|
|
|
int
|
|
EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx)
|
|
{
|
|
if (!BN_copy(order, &group->order))
|
|
return 0;
|
|
|
|
return !BN_is_zero(order);
|
|
}
|
|
|
|
|
|
int
|
|
EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx)
|
|
{
|
|
if (!BN_copy(cofactor, &group->cofactor))
|
|
return 0;
|
|
|
|
return !BN_is_zero(&group->cofactor);
|
|
}
|
|
|
|
|
|
void
|
|
EC_GROUP_set_curve_name(EC_GROUP * group, int nid)
|
|
{
|
|
group->curve_name = nid;
|
|
}
|
|
|
|
|
|
int
|
|
EC_GROUP_get_curve_name(const EC_GROUP * group)
|
|
{
|
|
return group->curve_name;
|
|
}
|
|
|
|
|
|
void
|
|
EC_GROUP_set_asn1_flag(EC_GROUP * group, int flag)
|
|
{
|
|
group->asn1_flag = flag;
|
|
}
|
|
|
|
|
|
int
|
|
EC_GROUP_get_asn1_flag(const EC_GROUP * group)
|
|
{
|
|
return group->asn1_flag;
|
|
}
|
|
|
|
|
|
void
|
|
EC_GROUP_set_point_conversion_form(EC_GROUP * group,
|
|
point_conversion_form_t form)
|
|
{
|
|
group->asn1_form = form;
|
|
}
|
|
|
|
|
|
point_conversion_form_t
|
|
EC_GROUP_get_point_conversion_form(const EC_GROUP * group)
|
|
{
|
|
return group->asn1_form;
|
|
}
|
|
|
|
|
|
size_t
|
|
EC_GROUP_set_seed(EC_GROUP * group, const unsigned char *p, size_t len)
|
|
{
|
|
if (group->seed) {
|
|
free(group->seed);
|
|
group->seed = NULL;
|
|
group->seed_len = 0;
|
|
}
|
|
if (!len || !p)
|
|
return 1;
|
|
|
|
if ((group->seed = malloc(len)) == NULL)
|
|
return 0;
|
|
memcpy(group->seed, p, len);
|
|
group->seed_len = len;
|
|
|
|
return len;
|
|
}
|
|
|
|
|
|
unsigned char *
|
|
EC_GROUP_get0_seed(const EC_GROUP * group)
|
|
{
|
|
return group->seed;
|
|
}
|
|
|
|
|
|
size_t
|
|
EC_GROUP_get_seed_len(const EC_GROUP * group)
|
|
{
|
|
return group->seed_len;
|
|
}
|
|
|
|
|
|
int
|
|
EC_GROUP_set_curve_GFp(EC_GROUP * group, const BIGNUM * p, const BIGNUM * a,
|
|
const BIGNUM * b, BN_CTX * ctx)
|
|
{
|
|
if (group->meth->group_set_curve == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
return group->meth->group_set_curve(group, p, a, b, ctx);
|
|
}
|
|
|
|
|
|
int
|
|
EC_GROUP_get_curve_GFp(const EC_GROUP * group, BIGNUM * p, BIGNUM * a,
|
|
BIGNUM * b, BN_CTX * ctx)
|
|
{
|
|
if (group->meth->group_get_curve == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
return group->meth->group_get_curve(group, p, a, b, ctx);
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_EC2M
|
|
int
|
|
EC_GROUP_set_curve_GF2m(EC_GROUP * group, const BIGNUM * p, const BIGNUM * a,
|
|
const BIGNUM * b, BN_CTX * ctx)
|
|
{
|
|
if (group->meth->group_set_curve == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
return group->meth->group_set_curve(group, p, a, b, ctx);
|
|
}
|
|
|
|
|
|
int
|
|
EC_GROUP_get_curve_GF2m(const EC_GROUP * group, BIGNUM * p, BIGNUM * a,
|
|
BIGNUM * b, BN_CTX * ctx)
|
|
{
|
|
if (group->meth->group_get_curve == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
return group->meth->group_get_curve(group, p, a, b, ctx);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
EC_GROUP_get_degree(const EC_GROUP * group)
|
|
{
|
|
if (group->meth->group_get_degree == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
return group->meth->group_get_degree(group);
|
|
}
|
|
|
|
|
|
int
|
|
EC_GROUP_check_discriminant(const EC_GROUP * group, BN_CTX * ctx)
|
|
{
|
|
if (group->meth->group_check_discriminant == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
return group->meth->group_check_discriminant(group, ctx);
|
|
}
|
|
|
|
|
|
int
|
|
EC_GROUP_cmp(const EC_GROUP * a, const EC_GROUP * b, BN_CTX * ctx)
|
|
{
|
|
int r = 0;
|
|
BIGNUM *a1, *a2, *a3, *b1, *b2, *b3;
|
|
BN_CTX *ctx_new = NULL;
|
|
|
|
/* compare the field types */
|
|
if (EC_METHOD_get_field_type(EC_GROUP_method_of(a)) !=
|
|
EC_METHOD_get_field_type(EC_GROUP_method_of(b)))
|
|
return 1;
|
|
/* compare the curve name (if present in both) */
|
|
if (EC_GROUP_get_curve_name(a) && EC_GROUP_get_curve_name(b) &&
|
|
EC_GROUP_get_curve_name(a) != EC_GROUP_get_curve_name(b))
|
|
return 1;
|
|
|
|
if (!ctx)
|
|
ctx_new = ctx = BN_CTX_new();
|
|
if (!ctx)
|
|
return -1;
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((a1 = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((a2 = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((a3 = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((b1 = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((b2 = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
if ((b3 = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
/*
|
|
* XXX This approach assumes that the external representation of
|
|
* curves over the same field type is the same.
|
|
*/
|
|
if (!a->meth->group_get_curve(a, a1, a2, a3, ctx) ||
|
|
!b->meth->group_get_curve(b, b1, b2, b3, ctx))
|
|
r = 1;
|
|
|
|
if (r || BN_cmp(a1, b1) || BN_cmp(a2, b2) || BN_cmp(a3, b3))
|
|
r = 1;
|
|
|
|
/* XXX EC_POINT_cmp() assumes that the methods are equal */
|
|
if (r || EC_POINT_cmp(a, EC_GROUP_get0_generator(a),
|
|
EC_GROUP_get0_generator(b), ctx))
|
|
r = 1;
|
|
|
|
if (!r) {
|
|
/* compare the order and cofactor */
|
|
if (!EC_GROUP_get_order(a, a1, ctx) ||
|
|
!EC_GROUP_get_order(b, b1, ctx) ||
|
|
!EC_GROUP_get_cofactor(a, a2, ctx) ||
|
|
!EC_GROUP_get_cofactor(b, b2, ctx))
|
|
goto err;
|
|
if (BN_cmp(a1, b1) || BN_cmp(a2, b2))
|
|
r = 1;
|
|
}
|
|
BN_CTX_end(ctx);
|
|
if (ctx_new)
|
|
BN_CTX_free(ctx);
|
|
|
|
return r;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
if (ctx_new)
|
|
BN_CTX_free(ctx);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Coordinate blinding for EC_POINT.
|
|
*
|
|
* The underlying EC_METHOD can optionally implement this function:
|
|
* underlying implementations should return 0 on errors, or 1 on success.
|
|
*
|
|
* This wrapper returns 1 in case the underlying EC_METHOD does not support
|
|
* coordinate blinding.
|
|
*/
|
|
int
|
|
ec_point_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->blind_coordinates == NULL)
|
|
return 1;
|
|
|
|
return group->meth->blind_coordinates(group, p, ctx);
|
|
}
|
|
|
|
/* this has 'package' visibility */
|
|
int
|
|
EC_EX_DATA_set_data(EC_EXTRA_DATA ** ex_data, void *data,
|
|
void *(*dup_func) (void *),
|
|
void (*free_func) (void *),
|
|
void (*clear_free_func) (void *))
|
|
{
|
|
EC_EXTRA_DATA *d;
|
|
|
|
if (ex_data == NULL)
|
|
return 0;
|
|
|
|
for (d = *ex_data; d != NULL; d = d->next) {
|
|
if (d->dup_func == dup_func && d->free_func == free_func &&
|
|
d->clear_free_func == clear_free_func) {
|
|
ECerror(EC_R_SLOT_FULL);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (data == NULL)
|
|
/* no explicit entry needed */
|
|
return 1;
|
|
|
|
d = malloc(sizeof *d);
|
|
if (d == NULL)
|
|
return 0;
|
|
|
|
d->data = data;
|
|
d->dup_func = dup_func;
|
|
d->free_func = free_func;
|
|
d->clear_free_func = clear_free_func;
|
|
|
|
d->next = *ex_data;
|
|
*ex_data = d;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* this has 'package' visibility */
|
|
void *
|
|
EC_EX_DATA_get_data(const EC_EXTRA_DATA * ex_data,
|
|
void *(*dup_func) (void *),
|
|
void (*free_func) (void *),
|
|
void (*clear_free_func) (void *))
|
|
{
|
|
const EC_EXTRA_DATA *d;
|
|
|
|
for (d = ex_data; d != NULL; d = d->next) {
|
|
if (d->dup_func == dup_func && d->free_func == free_func && d->clear_free_func == clear_free_func)
|
|
return d->data;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* this has 'package' visibility */
|
|
void
|
|
EC_EX_DATA_free_data(EC_EXTRA_DATA ** ex_data,
|
|
void *(*dup_func) (void *),
|
|
void (*free_func) (void *),
|
|
void (*clear_free_func) (void *))
|
|
{
|
|
EC_EXTRA_DATA **p;
|
|
|
|
if (ex_data == NULL)
|
|
return;
|
|
|
|
for (p = ex_data; *p != NULL; p = &((*p)->next)) {
|
|
if ((*p)->dup_func == dup_func &&
|
|
(*p)->free_func == free_func &&
|
|
(*p)->clear_free_func == clear_free_func) {
|
|
EC_EXTRA_DATA *next = (*p)->next;
|
|
|
|
(*p)->free_func((*p)->data);
|
|
free(*p);
|
|
|
|
*p = next;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* this has 'package' visibility */
|
|
void
|
|
EC_EX_DATA_clear_free_data(EC_EXTRA_DATA ** ex_data,
|
|
void *(*dup_func) (void *),
|
|
void (*free_func) (void *),
|
|
void (*clear_free_func) (void *))
|
|
{
|
|
EC_EXTRA_DATA **p;
|
|
|
|
if (ex_data == NULL)
|
|
return;
|
|
|
|
for (p = ex_data; *p != NULL; p = &((*p)->next)) {
|
|
if ((*p)->dup_func == dup_func &&
|
|
(*p)->free_func == free_func &&
|
|
(*p)->clear_free_func == clear_free_func) {
|
|
EC_EXTRA_DATA *next = (*p)->next;
|
|
|
|
(*p)->clear_free_func((*p)->data);
|
|
free(*p);
|
|
|
|
*p = next;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* this has 'package' visibility */
|
|
void
|
|
EC_EX_DATA_free_all_data(EC_EXTRA_DATA ** ex_data)
|
|
{
|
|
EC_EXTRA_DATA *d;
|
|
|
|
if (ex_data == NULL)
|
|
return;
|
|
|
|
d = *ex_data;
|
|
while (d) {
|
|
EC_EXTRA_DATA *next = d->next;
|
|
|
|
d->free_func(d->data);
|
|
free(d);
|
|
|
|
d = next;
|
|
}
|
|
*ex_data = NULL;
|
|
}
|
|
|
|
/* this has 'package' visibility */
|
|
void
|
|
EC_EX_DATA_clear_free_all_data(EC_EXTRA_DATA ** ex_data)
|
|
{
|
|
EC_EXTRA_DATA *d;
|
|
|
|
if (ex_data == NULL)
|
|
return;
|
|
|
|
d = *ex_data;
|
|
while (d) {
|
|
EC_EXTRA_DATA *next = d->next;
|
|
|
|
d->clear_free_func(d->data);
|
|
free(d);
|
|
|
|
d = next;
|
|
}
|
|
*ex_data = NULL;
|
|
}
|
|
|
|
|
|
/* functions for EC_POINT objects */
|
|
|
|
EC_POINT *
|
|
EC_POINT_new(const EC_GROUP * group)
|
|
{
|
|
EC_POINT *ret;
|
|
|
|
if (group == NULL) {
|
|
ECerror(ERR_R_PASSED_NULL_PARAMETER);
|
|
return NULL;
|
|
}
|
|
if (group->meth->point_init == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return NULL;
|
|
}
|
|
ret = malloc(sizeof *ret);
|
|
if (ret == NULL) {
|
|
ECerror(ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
ret->meth = group->meth;
|
|
|
|
if (!ret->meth->point_init(ret)) {
|
|
free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
void
|
|
EC_POINT_free(EC_POINT * point)
|
|
{
|
|
if (!point)
|
|
return;
|
|
|
|
if (point->meth->point_finish != 0)
|
|
point->meth->point_finish(point);
|
|
free(point);
|
|
}
|
|
|
|
|
|
void
|
|
EC_POINT_clear_free(EC_POINT * point)
|
|
{
|
|
if (!point)
|
|
return;
|
|
|
|
if (point->meth->point_clear_finish != 0)
|
|
point->meth->point_clear_finish(point);
|
|
else if (point->meth->point_finish != 0)
|
|
point->meth->point_finish(point);
|
|
freezero(point, sizeof *point);
|
|
}
|
|
|
|
|
|
int
|
|
EC_POINT_copy(EC_POINT * dest, const EC_POINT * src)
|
|
{
|
|
if (dest->meth->point_copy == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (dest->meth != src->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
if (dest == src)
|
|
return 1;
|
|
return dest->meth->point_copy(dest, src);
|
|
}
|
|
|
|
|
|
EC_POINT *
|
|
EC_POINT_dup(const EC_POINT * a, const EC_GROUP * group)
|
|
{
|
|
EC_POINT *t;
|
|
int r;
|
|
|
|
if (a == NULL)
|
|
return NULL;
|
|
|
|
t = EC_POINT_new(group);
|
|
if (t == NULL)
|
|
return (NULL);
|
|
r = EC_POINT_copy(t, a);
|
|
if (!r) {
|
|
EC_POINT_free(t);
|
|
return NULL;
|
|
} else
|
|
return t;
|
|
}
|
|
|
|
|
|
const EC_METHOD *
|
|
EC_POINT_method_of(const EC_POINT * point)
|
|
{
|
|
return point->meth;
|
|
}
|
|
|
|
|
|
int
|
|
EC_POINT_set_to_infinity(const EC_GROUP * group, EC_POINT * point)
|
|
{
|
|
if (group->meth->point_set_to_infinity == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (group->meth != point->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->point_set_to_infinity(group, point);
|
|
}
|
|
|
|
|
|
int
|
|
EC_POINT_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point,
|
|
const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->point_set_Jprojective_coordinates_GFp == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (group->meth != point->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->point_set_Jprojective_coordinates_GFp(group, point, x, y, z, ctx);
|
|
}
|
|
|
|
|
|
int
|
|
EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
|
|
const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->point_get_Jprojective_coordinates_GFp == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (group->meth != point->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->point_get_Jprojective_coordinates_GFp(group, point, x, y, z, ctx);
|
|
}
|
|
|
|
|
|
int
|
|
EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point,
|
|
const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->point_set_affine_coordinates == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (group->meth != point->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->point_set_affine_coordinates(group, point, x, y, ctx);
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_EC2M
|
|
int
|
|
EC_POINT_set_affine_coordinates_GF2m(const EC_GROUP *group, EC_POINT *point,
|
|
const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->point_set_affine_coordinates == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (group->meth != point->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->point_set_affine_coordinates(group, point, x, y, ctx);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point,
|
|
BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->point_get_affine_coordinates == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (group->meth != point->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->point_get_affine_coordinates(group, point, x, y, ctx);
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_EC2M
|
|
int
|
|
EC_POINT_get_affine_coordinates_GF2m(const EC_GROUP *group, const EC_POINT *point,
|
|
BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->point_get_affine_coordinates == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (group->meth != point->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->point_get_affine_coordinates(group, point, x, y, ctx);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
|
const EC_POINT *b, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->add == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if ((group->meth != r->meth) || (r->meth != a->meth) || (a->meth != b->meth)) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->add(group, r, a, b, ctx);
|
|
}
|
|
|
|
|
|
int
|
|
EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->dbl == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if ((group->meth != r->meth) || (r->meth != a->meth)) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->dbl(group, r, a, ctx);
|
|
}
|
|
|
|
|
|
int
|
|
EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->invert == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (group->meth != a->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->invert(group, a, ctx);
|
|
}
|
|
|
|
|
|
int
|
|
EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
|
|
{
|
|
if (group->meth->is_at_infinity == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (group->meth != point->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->is_at_infinity(group, point);
|
|
}
|
|
|
|
|
|
int
|
|
EC_POINT_is_on_curve(const EC_GROUP * group, const EC_POINT * point, BN_CTX * ctx)
|
|
{
|
|
if (group->meth->is_on_curve == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (group->meth != point->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->is_on_curve(group, point, ctx);
|
|
}
|
|
|
|
|
|
int
|
|
EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b,
|
|
BN_CTX * ctx)
|
|
{
|
|
if (group->meth->point_cmp == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return -1;
|
|
}
|
|
if ((group->meth != a->meth) || (a->meth != b->meth)) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return -1;
|
|
}
|
|
return group->meth->point_cmp(group, a, b, ctx);
|
|
}
|
|
|
|
|
|
int
|
|
EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->make_affine == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (group->meth != point->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->make_affine(group, point, ctx);
|
|
}
|
|
|
|
|
|
int
|
|
EC_POINTs_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[],
|
|
BN_CTX *ctx)
|
|
{
|
|
size_t i;
|
|
|
|
if (group->meth->points_make_affine == 0) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
for (i = 0; i < num; i++) {
|
|
if (group->meth != points[i]->meth) {
|
|
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
}
|
|
return group->meth->points_make_affine(group, num, points, ctx);
|
|
}
|
|
|
|
|
|
/* Functions for point multiplication */
|
|
int
|
|
EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
|
|
size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
|
|
{
|
|
/*
|
|
* The function pointers must be set, and only support num == 0 and
|
|
* num == 1.
|
|
*/
|
|
if (group->meth->mul_generator_ct == NULL ||
|
|
group->meth->mul_single_ct == NULL ||
|
|
group->meth->mul_double_nonct == NULL ||
|
|
num > 1) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
|
|
/* Either bP or aG + bP, this is sane. */
|
|
if (num == 1 && points != NULL && scalars != NULL)
|
|
return EC_POINT_mul(group, r, scalar, points[0], scalars[0],
|
|
ctx);
|
|
|
|
/* aG, this is sane */
|
|
if (scalar != NULL && points == NULL && scalars == NULL)
|
|
return EC_POINT_mul(group, r, scalar, NULL, NULL, ctx);
|
|
|
|
/* anything else is an error */
|
|
ECerror(ERR_R_EC_LIB);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
|
|
const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->mul_generator_ct == NULL ||
|
|
group->meth->mul_single_ct == NULL ||
|
|
group->meth->mul_double_nonct == NULL) {
|
|
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (g_scalar != NULL && point == NULL && p_scalar == NULL) {
|
|
/*
|
|
* In this case we want to compute g_scalar * GeneratorPoint:
|
|
* this codepath is reached most prominently by (ephemeral) key
|
|
* generation of EC cryptosystems (i.e. ECDSA keygen and sign
|
|
* setup, ECDH keygen/first half), where the scalar is always
|
|
* secret. This is why we ignore if BN_FLG_CONSTTIME is actually
|
|
* set and we always call the constant time version.
|
|
*/
|
|
return group->meth->mul_generator_ct(group, r, g_scalar, ctx);
|
|
}
|
|
if (g_scalar == NULL && point != NULL && p_scalar != NULL) {
|
|
/* In this case we want to compute p_scalar * GenericPoint:
|
|
* this codepath is reached most prominently by the second half
|
|
* of ECDH, where the secret scalar is multiplied by the peer's
|
|
* public point. To protect the secret scalar, we ignore if
|
|
* BN_FLG_CONSTTIME is actually set and we always call the
|
|
* constant time version.
|
|
*/
|
|
return group->meth->mul_single_ct(group, r, p_scalar, point,
|
|
ctx);
|
|
}
|
|
if (g_scalar != NULL && point != NULL && p_scalar != NULL) {
|
|
/*
|
|
* In this case we want to compute
|
|
* g_scalar * GeneratorPoint + p_scalar * GenericPoint:
|
|
* this codepath is reached most prominently by ECDSA signature
|
|
* verification. So we call the non-ct version.
|
|
*/
|
|
return group->meth->mul_double_nonct(group, r, g_scalar,
|
|
p_scalar, point, ctx);
|
|
}
|
|
|
|
/* Anything else is an error. */
|
|
ECerror(ERR_R_EC_LIB);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
EC_GROUP_precompute_mult(EC_GROUP * group, BN_CTX * ctx)
|
|
{
|
|
if (group->meth->precompute_mult != 0)
|
|
return group->meth->precompute_mult(group, ctx);
|
|
else
|
|
return 1; /* nothing to do, so report success */
|
|
}
|
|
|
|
int
|
|
EC_GROUP_have_precompute_mult(const EC_GROUP * group)
|
|
{
|
|
if (group->meth->have_precompute_mult != 0)
|
|
return group->meth->have_precompute_mult(group);
|
|
else
|
|
return 0; /* cannot tell whether precomputation has
|
|
* been performed */
|
|
}
|
|
|
|
EC_KEY *
|
|
ECParameters_dup(EC_KEY *key)
|
|
{
|
|
unsigned char *p = NULL;
|
|
EC_KEY *k = NULL;
|
|
int len;
|
|
|
|
if (key == NULL)
|
|
return (NULL);
|
|
|
|
if ((len = i2d_ECParameters(key, &p)) > 0)
|
|
k = d2i_ECParameters(NULL, (const unsigned char **)&p, len);
|
|
|
|
return (k);
|
|
}
|