// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include "common/alignment.h" #include "common/assert.h" #include "common/bit_util.h" #include "common/div_ceil.h" #include "video_core/gpu.h" #include "video_core/textures/decoders.h" #include "video_core/textures/texture.h" namespace Tegra::Texture { namespace { template void Swizzle(std::span output, std::span input, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth, u32 stride_alignment) { // The origin of the transformation can be configured here, leave it as zero as the current API // doesn't expose it. static constexpr u32 origin_x = 0; static constexpr u32 origin_y = 0; static constexpr u32 origin_z = 0; // We can configure here a custom pitch // As it's not exposed 'width * bpp' will be the expected pitch. const u32 pitch = width * bytes_per_pixel; const u32 stride = Common::AlignUpLog2(width, stride_alignment) * bytes_per_pixel; const u32 gobs_in_x = Common::DivCeilLog2(stride, GOB_SIZE_X_SHIFT); const u32 block_size = gobs_in_x << (GOB_SIZE_SHIFT + block_height + block_depth); const u32 slice_size = Common::DivCeilLog2(height, block_height + GOB_SIZE_Y_SHIFT) * block_size; const u32 block_height_mask = (1U << block_height) - 1; const u32 block_depth_mask = (1U << block_depth) - 1; const u32 x_shift = GOB_SIZE_SHIFT + block_height + block_depth; for (u32 slice = 0; slice < depth; ++slice) { const u32 z = slice + origin_z; const u32 offset_z = (z >> block_depth) * slice_size + ((z & block_depth_mask) << (GOB_SIZE_SHIFT + block_height)); for (u32 line = 0; line < height; ++line) { const u32 y = line + origin_y; const auto& table = SWIZZLE_TABLE[y % GOB_SIZE_Y]; const u32 block_y = y >> GOB_SIZE_Y_SHIFT; const u32 offset_y = (block_y >> block_height) * block_size + ((block_y & block_height_mask) << GOB_SIZE_SHIFT); for (u32 column = 0; column < width; ++column) { const u32 x = (column + origin_x) * bytes_per_pixel; const u32 offset_x = (x >> GOB_SIZE_X_SHIFT) << x_shift; const u32 base_swizzled_offset = offset_z + offset_y + offset_x; const u32 swizzled_offset = base_swizzled_offset + table[x % GOB_SIZE_X]; const u32 unswizzled_offset = slice * pitch * height + line * pitch + column * bytes_per_pixel; if (const auto offset = (TO_LINEAR ? unswizzled_offset : swizzled_offset); offset > input.size()) { // TODO(Rodrigo): This is an out of bounds access that should never happen. To // avoid crashing the emulator, continue. ASSERT_MSG(false, "offset {} exceeds input size {}!", offset, input.size()); continue; } u8* const dst = &output[TO_LINEAR ? swizzled_offset : unswizzled_offset]; const u8* const src = &input[TO_LINEAR ? unswizzled_offset : swizzled_offset]; std::memcpy(dst, src, bytes_per_pixel); } } } } } // Anonymous namespace void UnswizzleTexture(std::span output, std::span input, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth, u32 stride_alignment) { Swizzle(output, input, bytes_per_pixel, width, height, depth, block_height, block_depth, stride_alignment); } void SwizzleTexture(std::span output, std::span input, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth, u32 stride_alignment) { Swizzle(output, input, bytes_per_pixel, width, height, depth, block_height, block_depth, stride_alignment); } void SwizzleSubrect(u32 subrect_width, u32 subrect_height, u32 source_pitch, u32 swizzled_width, u32 bytes_per_pixel, u8* swizzled_data, const u8* unswizzled_data, u32 block_height_bit, u32 offset_x, u32 offset_y) { const u32 block_height = 1U << block_height_bit; const u32 image_width_in_gobs = (swizzled_width * bytes_per_pixel + (GOB_SIZE_X - 1)) / GOB_SIZE_X; for (u32 line = 0; line < subrect_height; ++line) { const u32 dst_y = line + offset_y; const u32 gob_address_y = (dst_y / (GOB_SIZE_Y * block_height)) * GOB_SIZE * block_height * image_width_in_gobs + ((dst_y % (GOB_SIZE_Y * block_height)) / GOB_SIZE_Y) * GOB_SIZE; const auto& table = SWIZZLE_TABLE[dst_y % GOB_SIZE_Y]; for (u32 x = 0; x < subrect_width; ++x) { const u32 dst_x = x + offset_x; const u32 gob_address = gob_address_y + (dst_x * bytes_per_pixel / GOB_SIZE_X) * GOB_SIZE * block_height; const u32 swizzled_offset = gob_address + table[(dst_x * bytes_per_pixel) % GOB_SIZE_X]; const u32 unswizzled_offset = line * source_pitch + x * bytes_per_pixel; const u8* const source_line = unswizzled_data + unswizzled_offset; u8* const dest_addr = swizzled_data + swizzled_offset; std::memcpy(dest_addr, source_line, bytes_per_pixel); } } } void UnswizzleSubrect(u32 line_length_in, u32 line_count, u32 pitch, u32 width, u32 bytes_per_pixel, u32 block_height, u32 origin_x, u32 origin_y, u8* output, const u8* input) { const u32 stride = width * bytes_per_pixel; const u32 gobs_in_x = (stride + GOB_SIZE_X - 1) / GOB_SIZE_X; const u32 block_size = gobs_in_x << (GOB_SIZE_SHIFT + block_height); const u32 block_height_mask = (1U << block_height) - 1; const u32 x_shift = GOB_SIZE_SHIFT + block_height; for (u32 line = 0; line < line_count; ++line) { const u32 src_y = line + origin_y; const auto& table = SWIZZLE_TABLE[src_y % GOB_SIZE_Y]; const u32 block_y = src_y >> GOB_SIZE_Y_SHIFT; const u32 src_offset_y = (block_y >> block_height) * block_size + ((block_y & block_height_mask) << GOB_SIZE_SHIFT); for (u32 column = 0; column < line_length_in; ++column) { const u32 src_x = (column + origin_x) * bytes_per_pixel; const u32 src_offset_x = (src_x >> GOB_SIZE_X_SHIFT) << x_shift; const u32 swizzled_offset = src_offset_y + src_offset_x + table[src_x % GOB_SIZE_X]; const u32 unswizzled_offset = line * pitch + column * bytes_per_pixel; std::memcpy(output + unswizzled_offset, input + swizzled_offset, bytes_per_pixel); } } } void SwizzleSliceToVoxel(u32 line_length_in, u32 line_count, u32 pitch, u32 width, u32 height, u32 bytes_per_pixel, u32 block_height, u32 block_depth, u32 origin_x, u32 origin_y, u8* output, const u8* input) { UNIMPLEMENTED_IF(origin_x > 0); UNIMPLEMENTED_IF(origin_y > 0); const u32 stride = width * bytes_per_pixel; const u32 gobs_in_x = (stride + GOB_SIZE_X - 1) / GOB_SIZE_X; const u32 block_size = gobs_in_x << (GOB_SIZE_SHIFT + block_height + block_depth); const u32 block_height_mask = (1U << block_height) - 1; const u32 x_shift = static_cast(GOB_SIZE_SHIFT) + block_height + block_depth; for (u32 line = 0; line < line_count; ++line) { const auto& table = SWIZZLE_TABLE[line % GOB_SIZE_Y]; const u32 block_y = line / GOB_SIZE_Y; const u32 dst_offset_y = (block_y >> block_height) * block_size + (block_y & block_height_mask) * GOB_SIZE; for (u32 x = 0; x < line_length_in; ++x) { const u32 dst_offset = ((x / GOB_SIZE_X) << x_shift) + dst_offset_y + table[x % GOB_SIZE_X]; const u32 src_offset = x * bytes_per_pixel + line * pitch; std::memcpy(output + dst_offset, input + src_offset, bytes_per_pixel); } } } void SwizzleKepler(const u32 width, const u32 height, const u32 dst_x, const u32 dst_y, const u32 block_height_bit, const std::size_t copy_size, const u8* source_data, u8* swizzle_data) { const u32 block_height = 1U << block_height_bit; const u32 image_width_in_gobs{(width + GOB_SIZE_X - 1) / GOB_SIZE_X}; std::size_t count = 0; for (std::size_t y = dst_y; y < height && count < copy_size; ++y) { const std::size_t gob_address_y = (y / (GOB_SIZE_Y * block_height)) * GOB_SIZE * block_height * image_width_in_gobs + ((y % (GOB_SIZE_Y * block_height)) / GOB_SIZE_Y) * GOB_SIZE; const auto& table = SWIZZLE_TABLE[y % GOB_SIZE_Y]; for (std::size_t x = dst_x; x < width && count < copy_size; ++x) { const std::size_t gob_address = gob_address_y + (x / GOB_SIZE_X) * GOB_SIZE * block_height; const std::size_t swizzled_offset = gob_address + table[x % GOB_SIZE_X]; const u8* source_line = source_data + count; u8* dest_addr = swizzle_data + swizzled_offset; count++; std::memcpy(dest_addr, source_line, 1); } } } std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth) { if (tiled) { const u32 aligned_width = Common::AlignUpLog2(width * bytes_per_pixel, GOB_SIZE_X_SHIFT); const u32 aligned_height = Common::AlignUpLog2(height, GOB_SIZE_Y_SHIFT + block_height); const u32 aligned_depth = Common::AlignUpLog2(depth, GOB_SIZE_Z_SHIFT + block_depth); return aligned_width * aligned_height * aligned_depth; } else { return width * height * depth * bytes_per_pixel; } } u64 GetGOBOffset(u32 width, u32 height, u32 dst_x, u32 dst_y, u32 block_height, u32 bytes_per_pixel) { auto div_ceil = [](const u32 x, const u32 y) { return ((x + y - 1) / y); }; const u32 gobs_in_block = 1 << block_height; const u32 y_blocks = GOB_SIZE_Y << block_height; const u32 x_per_gob = GOB_SIZE_X / bytes_per_pixel; const u32 x_blocks = div_ceil(width, x_per_gob); const u32 block_size = GOB_SIZE * gobs_in_block; const u32 stride = block_size * x_blocks; const u32 base = (dst_y / y_blocks) * stride + (dst_x / x_per_gob) * block_size; const u32 relative_y = dst_y % y_blocks; return base + (relative_y / GOB_SIZE_Y) * GOB_SIZE; } } // namespace Tegra::Texture