mirror of
https://github.com/pineappleEA/pineapple-src.git
synced 2024-12-11 08:08:25 -05:00
862 lines
23 KiB
C
862 lines
23 KiB
C
|
/* $OpenBSD: rsa_eay.c,v 1.51 2019/11/02 13:52:31 jsing Exp $ */
|
||
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This package is an SSL implementation written
|
||
|
* by Eric Young (eay@cryptsoft.com).
|
||
|
* The implementation was written so as to conform with Netscapes SSL.
|
||
|
*
|
||
|
* This library is free for commercial and non-commercial use as long as
|
||
|
* the following conditions are aheared to. The following conditions
|
||
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
||
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
||
|
* included with this distribution is covered by the same copyright terms
|
||
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
||
|
*
|
||
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
||
|
* the code are not to be removed.
|
||
|
* If this package is used in a product, Eric Young should be given attribution
|
||
|
* as the author of the parts of the library used.
|
||
|
* This can be in the form of a textual message at program startup or
|
||
|
* in documentation (online or textual) provided with the package.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* "This product includes cryptographic software written by
|
||
|
* Eric Young (eay@cryptsoft.com)"
|
||
|
* The word 'cryptographic' can be left out if the rouines from the library
|
||
|
* being used are not cryptographic related :-).
|
||
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
||
|
* the apps directory (application code) you must include an acknowledgement:
|
||
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
* The licence and distribution terms for any publically available version or
|
||
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
||
|
* copied and put under another distribution licence
|
||
|
* [including the GNU Public Licence.]
|
||
|
*/
|
||
|
/* ====================================================================
|
||
|
* Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
*
|
||
|
* 3. All advertising materials mentioning features or use of this
|
||
|
* software must display the following acknowledgment:
|
||
|
* "This product includes software developed by the OpenSSL Project
|
||
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
||
|
*
|
||
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
||
|
* endorse or promote products derived from this software without
|
||
|
* prior written permission. For written permission, please contact
|
||
|
* openssl-core@openssl.org.
|
||
|
*
|
||
|
* 5. Products derived from this software may not be called "OpenSSL"
|
||
|
* nor may "OpenSSL" appear in their names without prior written
|
||
|
* permission of the OpenSSL Project.
|
||
|
*
|
||
|
* 6. Redistributions of any form whatsoever must retain the following
|
||
|
* acknowledgment:
|
||
|
* "This product includes software developed by the OpenSSL Project
|
||
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
||
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
||
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
* ====================================================================
|
||
|
*
|
||
|
* This product includes cryptographic software written by Eric Young
|
||
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
||
|
* Hudson (tjh@cryptsoft.com).
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <openssl/opensslconf.h>
|
||
|
|
||
|
#include <openssl/bn.h>
|
||
|
#include <openssl/err.h>
|
||
|
#include <openssl/rsa.h>
|
||
|
|
||
|
#include "bn_lcl.h"
|
||
|
|
||
|
static int RSA_eay_public_encrypt(int flen, const unsigned char *from,
|
||
|
unsigned char *to, RSA *rsa, int padding);
|
||
|
static int RSA_eay_private_encrypt(int flen, const unsigned char *from,
|
||
|
unsigned char *to, RSA *rsa, int padding);
|
||
|
static int RSA_eay_public_decrypt(int flen, const unsigned char *from,
|
||
|
unsigned char *to, RSA *rsa, int padding);
|
||
|
static int RSA_eay_private_decrypt(int flen, const unsigned char *from,
|
||
|
unsigned char *to, RSA *rsa, int padding);
|
||
|
static int RSA_eay_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa, BN_CTX *ctx);
|
||
|
static int RSA_eay_init(RSA *rsa);
|
||
|
static int RSA_eay_finish(RSA *rsa);
|
||
|
|
||
|
static RSA_METHOD rsa_pkcs1_eay_meth = {
|
||
|
.name = "Eric Young's PKCS#1 RSA",
|
||
|
.rsa_pub_enc = RSA_eay_public_encrypt,
|
||
|
.rsa_pub_dec = RSA_eay_public_decrypt, /* signature verification */
|
||
|
.rsa_priv_enc = RSA_eay_private_encrypt, /* signing */
|
||
|
.rsa_priv_dec = RSA_eay_private_decrypt,
|
||
|
.rsa_mod_exp = RSA_eay_mod_exp,
|
||
|
.bn_mod_exp = BN_mod_exp_mont_ct, /* XXX probably we should not use Montgomery if e == 3 */
|
||
|
.init = RSA_eay_init,
|
||
|
.finish = RSA_eay_finish,
|
||
|
};
|
||
|
|
||
|
const RSA_METHOD *
|
||
|
RSA_PKCS1_OpenSSL(void)
|
||
|
{
|
||
|
return &rsa_pkcs1_eay_meth;
|
||
|
}
|
||
|
|
||
|
const RSA_METHOD *
|
||
|
RSA_PKCS1_SSLeay(void)
|
||
|
{
|
||
|
return &rsa_pkcs1_eay_meth;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
RSA_eay_public_encrypt(int flen, const unsigned char *from, unsigned char *to,
|
||
|
RSA *rsa, int padding)
|
||
|
{
|
||
|
BIGNUM *f, *ret;
|
||
|
int i, j, k, num = 0, r = -1;
|
||
|
unsigned char *buf = NULL;
|
||
|
BN_CTX *ctx = NULL;
|
||
|
|
||
|
if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) {
|
||
|
RSAerror(RSA_R_MODULUS_TOO_LARGE);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (BN_ucmp(rsa->n, rsa->e) <= 0) {
|
||
|
RSAerror(RSA_R_BAD_E_VALUE);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* for large moduli, enforce exponent limit */
|
||
|
if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) {
|
||
|
if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) {
|
||
|
RSAerror(RSA_R_BAD_E_VALUE);
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ((ctx = BN_CTX_new()) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
BN_CTX_start(ctx);
|
||
|
f = BN_CTX_get(ctx);
|
||
|
ret = BN_CTX_get(ctx);
|
||
|
num = BN_num_bytes(rsa->n);
|
||
|
buf = malloc(num);
|
||
|
|
||
|
if (f == NULL || ret == NULL || buf == NULL) {
|
||
|
RSAerror(ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
switch (padding) {
|
||
|
case RSA_PKCS1_PADDING:
|
||
|
i = RSA_padding_add_PKCS1_type_2(buf, num, from, flen);
|
||
|
break;
|
||
|
#ifndef OPENSSL_NO_SHA
|
||
|
case RSA_PKCS1_OAEP_PADDING:
|
||
|
i = RSA_padding_add_PKCS1_OAEP(buf, num, from, flen, NULL, 0);
|
||
|
break;
|
||
|
#endif
|
||
|
case RSA_NO_PADDING:
|
||
|
i = RSA_padding_add_none(buf, num, from, flen);
|
||
|
break;
|
||
|
default:
|
||
|
RSAerror(RSA_R_UNKNOWN_PADDING_TYPE);
|
||
|
goto err;
|
||
|
}
|
||
|
if (i <= 0)
|
||
|
goto err;
|
||
|
|
||
|
if (BN_bin2bn(buf, num, f) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
if (BN_ucmp(f, rsa->n) >= 0) {
|
||
|
/* usually the padding functions would catch this */
|
||
|
RSAerror(RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
|
||
|
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n,
|
||
|
CRYPTO_LOCK_RSA, rsa->n, ctx))
|
||
|
goto err;
|
||
|
|
||
|
if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx,
|
||
|
rsa->_method_mod_n))
|
||
|
goto err;
|
||
|
|
||
|
/* put in leading 0 bytes if the number is less than the
|
||
|
* length of the modulus */
|
||
|
j = BN_num_bytes(ret);
|
||
|
i = BN_bn2bin(ret, &(to[num - j]));
|
||
|
for (k = 0; k < num - i; k++)
|
||
|
to[k] = 0;
|
||
|
|
||
|
r = num;
|
||
|
err:
|
||
|
if (ctx != NULL) {
|
||
|
BN_CTX_end(ctx);
|
||
|
BN_CTX_free(ctx);
|
||
|
}
|
||
|
freezero(buf, num);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static BN_BLINDING *
|
||
|
rsa_get_blinding(RSA *rsa, int *local, BN_CTX *ctx)
|
||
|
{
|
||
|
BN_BLINDING *ret;
|
||
|
int got_write_lock = 0;
|
||
|
CRYPTO_THREADID cur;
|
||
|
|
||
|
CRYPTO_r_lock(CRYPTO_LOCK_RSA);
|
||
|
|
||
|
if (rsa->blinding == NULL) {
|
||
|
CRYPTO_r_unlock(CRYPTO_LOCK_RSA);
|
||
|
CRYPTO_w_lock(CRYPTO_LOCK_RSA);
|
||
|
got_write_lock = 1;
|
||
|
|
||
|
if (rsa->blinding == NULL)
|
||
|
rsa->blinding = RSA_setup_blinding(rsa, ctx);
|
||
|
}
|
||
|
|
||
|
ret = rsa->blinding;
|
||
|
if (ret == NULL)
|
||
|
goto err;
|
||
|
|
||
|
CRYPTO_THREADID_current(&cur);
|
||
|
if (!CRYPTO_THREADID_cmp(&cur, BN_BLINDING_thread_id(ret))) {
|
||
|
/* rsa->blinding is ours! */
|
||
|
*local = 1;
|
||
|
} else {
|
||
|
/* resort to rsa->mt_blinding instead */
|
||
|
/*
|
||
|
* Instruct rsa_blinding_convert(), rsa_blinding_invert()
|
||
|
* that the BN_BLINDING is shared, meaning that accesses
|
||
|
* require locks, and that the blinding factor must be
|
||
|
* stored outside the BN_BLINDING
|
||
|
*/
|
||
|
*local = 0;
|
||
|
|
||
|
if (rsa->mt_blinding == NULL) {
|
||
|
if (!got_write_lock) {
|
||
|
CRYPTO_r_unlock(CRYPTO_LOCK_RSA);
|
||
|
CRYPTO_w_lock(CRYPTO_LOCK_RSA);
|
||
|
got_write_lock = 1;
|
||
|
}
|
||
|
|
||
|
if (rsa->mt_blinding == NULL)
|
||
|
rsa->mt_blinding = RSA_setup_blinding(rsa, ctx);
|
||
|
}
|
||
|
ret = rsa->mt_blinding;
|
||
|
}
|
||
|
|
||
|
err:
|
||
|
if (got_write_lock)
|
||
|
CRYPTO_w_unlock(CRYPTO_LOCK_RSA);
|
||
|
else
|
||
|
CRYPTO_r_unlock(CRYPTO_LOCK_RSA);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
rsa_blinding_convert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind, BN_CTX *ctx)
|
||
|
{
|
||
|
if (unblind == NULL)
|
||
|
/*
|
||
|
* Local blinding: store the unblinding factor
|
||
|
* in BN_BLINDING.
|
||
|
*/
|
||
|
return BN_BLINDING_convert_ex(f, NULL, b, ctx);
|
||
|
else {
|
||
|
/*
|
||
|
* Shared blinding: store the unblinding factor
|
||
|
* outside BN_BLINDING.
|
||
|
*/
|
||
|
int ret;
|
||
|
CRYPTO_w_lock(CRYPTO_LOCK_RSA_BLINDING);
|
||
|
ret = BN_BLINDING_convert_ex(f, unblind, b, ctx);
|
||
|
CRYPTO_w_unlock(CRYPTO_LOCK_RSA_BLINDING);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
rsa_blinding_invert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind, BN_CTX *ctx)
|
||
|
{
|
||
|
/*
|
||
|
* For local blinding, unblind is set to NULL, and BN_BLINDING_invert_ex
|
||
|
* will use the unblinding factor stored in BN_BLINDING.
|
||
|
* If BN_BLINDING is shared between threads, unblind must be non-null:
|
||
|
* BN_BLINDING_invert_ex will then use the local unblinding factor,
|
||
|
* and will only read the modulus from BN_BLINDING.
|
||
|
* In both cases it's safe to access the blinding without a lock.
|
||
|
*/
|
||
|
return BN_BLINDING_invert_ex(f, unblind, b, ctx);
|
||
|
}
|
||
|
|
||
|
/* signing */
|
||
|
static int
|
||
|
RSA_eay_private_encrypt(int flen, const unsigned char *from, unsigned char *to,
|
||
|
RSA *rsa, int padding)
|
||
|
{
|
||
|
BIGNUM *f, *ret, *res;
|
||
|
int i, j, k, num = 0, r = -1;
|
||
|
unsigned char *buf = NULL;
|
||
|
BN_CTX *ctx = NULL;
|
||
|
int local_blinding = 0;
|
||
|
/*
|
||
|
* Used only if the blinding structure is shared. A non-NULL unblind
|
||
|
* instructs rsa_blinding_convert() and rsa_blinding_invert() to store
|
||
|
* the unblinding factor outside the blinding structure.
|
||
|
*/
|
||
|
BIGNUM *unblind = NULL;
|
||
|
BN_BLINDING *blinding = NULL;
|
||
|
|
||
|
if ((ctx = BN_CTX_new()) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
BN_CTX_start(ctx);
|
||
|
f = BN_CTX_get(ctx);
|
||
|
ret = BN_CTX_get(ctx);
|
||
|
num = BN_num_bytes(rsa->n);
|
||
|
buf = malloc(num);
|
||
|
|
||
|
if (f == NULL || ret == NULL || buf == NULL) {
|
||
|
RSAerror(ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
switch (padding) {
|
||
|
case RSA_PKCS1_PADDING:
|
||
|
i = RSA_padding_add_PKCS1_type_1(buf, num, from, flen);
|
||
|
break;
|
||
|
case RSA_X931_PADDING:
|
||
|
i = RSA_padding_add_X931(buf, num, from, flen);
|
||
|
break;
|
||
|
case RSA_NO_PADDING:
|
||
|
i = RSA_padding_add_none(buf, num, from, flen);
|
||
|
break;
|
||
|
default:
|
||
|
RSAerror(RSA_R_UNKNOWN_PADDING_TYPE);
|
||
|
goto err;
|
||
|
}
|
||
|
if (i <= 0)
|
||
|
goto err;
|
||
|
|
||
|
if (BN_bin2bn(buf, num, f) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
if (BN_ucmp(f, rsa->n) >= 0) {
|
||
|
/* usually the padding functions would catch this */
|
||
|
RSAerror(RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) {
|
||
|
blinding = rsa_get_blinding(rsa, &local_blinding, ctx);
|
||
|
if (blinding == NULL) {
|
||
|
RSAerror(ERR_R_INTERNAL_ERROR);
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (blinding != NULL) {
|
||
|
if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) {
|
||
|
RSAerror(ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
if (!rsa_blinding_convert(blinding, f, unblind, ctx))
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if ((rsa->flags & RSA_FLAG_EXT_PKEY) ||
|
||
|
(rsa->p != NULL && rsa->q != NULL && rsa->dmp1 != NULL &&
|
||
|
rsa->dmq1 != NULL && rsa->iqmp != NULL)) {
|
||
|
if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx))
|
||
|
goto err;
|
||
|
} else {
|
||
|
BIGNUM d;
|
||
|
|
||
|
BN_init(&d);
|
||
|
BN_with_flags(&d, rsa->d, BN_FLG_CONSTTIME);
|
||
|
|
||
|
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
|
||
|
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n,
|
||
|
CRYPTO_LOCK_RSA, rsa->n, ctx))
|
||
|
goto err;
|
||
|
|
||
|
if (!rsa->meth->bn_mod_exp(ret, f, &d, rsa->n, ctx,
|
||
|
rsa->_method_mod_n)) {
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (blinding)
|
||
|
if (!rsa_blinding_invert(blinding, ret, unblind, ctx))
|
||
|
goto err;
|
||
|
|
||
|
if (padding == RSA_X931_PADDING) {
|
||
|
BN_sub(f, rsa->n, ret);
|
||
|
if (BN_cmp(ret, f) > 0)
|
||
|
res = f;
|
||
|
else
|
||
|
res = ret;
|
||
|
} else
|
||
|
res = ret;
|
||
|
|
||
|
/* put in leading 0 bytes if the number is less than the
|
||
|
* length of the modulus */
|
||
|
j = BN_num_bytes(res);
|
||
|
i = BN_bn2bin(res, &(to[num - j]));
|
||
|
for (k = 0; k < num - i; k++)
|
||
|
to[k] = 0;
|
||
|
|
||
|
r = num;
|
||
|
err:
|
||
|
if (ctx != NULL) {
|
||
|
BN_CTX_end(ctx);
|
||
|
BN_CTX_free(ctx);
|
||
|
}
|
||
|
freezero(buf, num);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
RSA_eay_private_decrypt(int flen, const unsigned char *from, unsigned char *to,
|
||
|
RSA *rsa, int padding)
|
||
|
{
|
||
|
BIGNUM *f, *ret;
|
||
|
int j, num = 0, r = -1;
|
||
|
unsigned char *p;
|
||
|
unsigned char *buf = NULL;
|
||
|
BN_CTX *ctx = NULL;
|
||
|
int local_blinding = 0;
|
||
|
/*
|
||
|
* Used only if the blinding structure is shared. A non-NULL unblind
|
||
|
* instructs rsa_blinding_convert() and rsa_blinding_invert() to store
|
||
|
* the unblinding factor outside the blinding structure.
|
||
|
*/
|
||
|
BIGNUM *unblind = NULL;
|
||
|
BN_BLINDING *blinding = NULL;
|
||
|
|
||
|
if ((ctx = BN_CTX_new()) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
BN_CTX_start(ctx);
|
||
|
f = BN_CTX_get(ctx);
|
||
|
ret = BN_CTX_get(ctx);
|
||
|
num = BN_num_bytes(rsa->n);
|
||
|
buf = malloc(num);
|
||
|
|
||
|
if (!f || !ret || !buf) {
|
||
|
RSAerror(ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* This check was for equality but PGP does evil things
|
||
|
* and chops off the top '0' bytes */
|
||
|
if (flen > num) {
|
||
|
RSAerror(RSA_R_DATA_GREATER_THAN_MOD_LEN);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* make data into a big number */
|
||
|
if (BN_bin2bn(from, (int)flen, f) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
if (BN_ucmp(f, rsa->n) >= 0) {
|
||
|
RSAerror(RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) {
|
||
|
blinding = rsa_get_blinding(rsa, &local_blinding, ctx);
|
||
|
if (blinding == NULL) {
|
||
|
RSAerror(ERR_R_INTERNAL_ERROR);
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (blinding != NULL) {
|
||
|
if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) {
|
||
|
RSAerror(ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
if (!rsa_blinding_convert(blinding, f, unblind, ctx))
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* do the decrypt */
|
||
|
if ((rsa->flags & RSA_FLAG_EXT_PKEY) ||
|
||
|
(rsa->p != NULL && rsa->q != NULL && rsa->dmp1 != NULL &&
|
||
|
rsa->dmq1 != NULL && rsa->iqmp != NULL)) {
|
||
|
if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx))
|
||
|
goto err;
|
||
|
} else {
|
||
|
BIGNUM d;
|
||
|
|
||
|
BN_init(&d);
|
||
|
BN_with_flags(&d, rsa->d, BN_FLG_CONSTTIME);
|
||
|
|
||
|
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
|
||
|
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n,
|
||
|
CRYPTO_LOCK_RSA, rsa->n, ctx))
|
||
|
goto err;
|
||
|
|
||
|
if (!rsa->meth->bn_mod_exp(ret, f, &d, rsa->n, ctx,
|
||
|
rsa->_method_mod_n)) {
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (blinding)
|
||
|
if (!rsa_blinding_invert(blinding, ret, unblind, ctx))
|
||
|
goto err;
|
||
|
|
||
|
p = buf;
|
||
|
j = BN_bn2bin(ret, p); /* j is only used with no-padding mode */
|
||
|
|
||
|
switch (padding) {
|
||
|
case RSA_PKCS1_PADDING:
|
||
|
r = RSA_padding_check_PKCS1_type_2(to, num, buf, j, num);
|
||
|
break;
|
||
|
#ifndef OPENSSL_NO_SHA
|
||
|
case RSA_PKCS1_OAEP_PADDING:
|
||
|
r = RSA_padding_check_PKCS1_OAEP(to, num, buf, j, num, NULL, 0);
|
||
|
break;
|
||
|
#endif
|
||
|
case RSA_NO_PADDING:
|
||
|
r = RSA_padding_check_none(to, num, buf, j, num);
|
||
|
break;
|
||
|
default:
|
||
|
RSAerror(RSA_R_UNKNOWN_PADDING_TYPE);
|
||
|
goto err;
|
||
|
}
|
||
|
if (r < 0)
|
||
|
RSAerror(RSA_R_PADDING_CHECK_FAILED);
|
||
|
|
||
|
err:
|
||
|
if (ctx != NULL) {
|
||
|
BN_CTX_end(ctx);
|
||
|
BN_CTX_free(ctx);
|
||
|
}
|
||
|
freezero(buf, num);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/* signature verification */
|
||
|
static int
|
||
|
RSA_eay_public_decrypt(int flen, const unsigned char *from, unsigned char *to,
|
||
|
RSA *rsa, int padding)
|
||
|
{
|
||
|
BIGNUM *f, *ret;
|
||
|
int i, num = 0, r = -1;
|
||
|
unsigned char *p;
|
||
|
unsigned char *buf = NULL;
|
||
|
BN_CTX *ctx = NULL;
|
||
|
|
||
|
if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) {
|
||
|
RSAerror(RSA_R_MODULUS_TOO_LARGE);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (BN_ucmp(rsa->n, rsa->e) <= 0) {
|
||
|
RSAerror(RSA_R_BAD_E_VALUE);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* for large moduli, enforce exponent limit */
|
||
|
if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) {
|
||
|
if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) {
|
||
|
RSAerror(RSA_R_BAD_E_VALUE);
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ((ctx = BN_CTX_new()) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
BN_CTX_start(ctx);
|
||
|
f = BN_CTX_get(ctx);
|
||
|
ret = BN_CTX_get(ctx);
|
||
|
num = BN_num_bytes(rsa->n);
|
||
|
buf = malloc(num);
|
||
|
|
||
|
if (!f || !ret || !buf) {
|
||
|
RSAerror(ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* This check was for equality but PGP does evil things
|
||
|
* and chops off the top '0' bytes */
|
||
|
if (flen > num) {
|
||
|
RSAerror(RSA_R_DATA_GREATER_THAN_MOD_LEN);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if (BN_bin2bn(from, flen, f) == NULL)
|
||
|
goto err;
|
||
|
|
||
|
if (BN_ucmp(f, rsa->n) >= 0) {
|
||
|
RSAerror(RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
|
||
|
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n,
|
||
|
CRYPTO_LOCK_RSA, rsa->n, ctx))
|
||
|
goto err;
|
||
|
|
||
|
if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx,
|
||
|
rsa->_method_mod_n))
|
||
|
goto err;
|
||
|
|
||
|
if (padding == RSA_X931_PADDING && (ret->d[0] & 0xf) != 12)
|
||
|
if (!BN_sub(ret, rsa->n, ret))
|
||
|
goto err;
|
||
|
|
||
|
p = buf;
|
||
|
i = BN_bn2bin(ret, p);
|
||
|
|
||
|
switch (padding) {
|
||
|
case RSA_PKCS1_PADDING:
|
||
|
r = RSA_padding_check_PKCS1_type_1(to, num, buf, i, num);
|
||
|
break;
|
||
|
case RSA_X931_PADDING:
|
||
|
r = RSA_padding_check_X931(to, num, buf, i, num);
|
||
|
break;
|
||
|
case RSA_NO_PADDING:
|
||
|
r = RSA_padding_check_none(to, num, buf, i, num);
|
||
|
break;
|
||
|
default:
|
||
|
RSAerror(RSA_R_UNKNOWN_PADDING_TYPE);
|
||
|
goto err;
|
||
|
}
|
||
|
if (r < 0)
|
||
|
RSAerror(RSA_R_PADDING_CHECK_FAILED);
|
||
|
|
||
|
err:
|
||
|
if (ctx != NULL) {
|
||
|
BN_CTX_end(ctx);
|
||
|
BN_CTX_free(ctx);
|
||
|
}
|
||
|
freezero(buf, num);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
RSA_eay_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
|
||
|
{
|
||
|
BIGNUM *r1, *m1, *vrfy;
|
||
|
BIGNUM dmp1, dmq1, c, pr1;
|
||
|
int ret = 0;
|
||
|
|
||
|
BN_CTX_start(ctx);
|
||
|
r1 = BN_CTX_get(ctx);
|
||
|
m1 = BN_CTX_get(ctx);
|
||
|
vrfy = BN_CTX_get(ctx);
|
||
|
if (r1 == NULL || m1 == NULL || vrfy == NULL) {
|
||
|
RSAerror(ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
{
|
||
|
BIGNUM p, q;
|
||
|
|
||
|
/*
|
||
|
* Make sure BN_mod_inverse in Montgomery intialization uses the
|
||
|
* BN_FLG_CONSTTIME flag
|
||
|
*/
|
||
|
BN_init(&p);
|
||
|
BN_init(&q);
|
||
|
BN_with_flags(&p, rsa->p, BN_FLG_CONSTTIME);
|
||
|
BN_with_flags(&q, rsa->q, BN_FLG_CONSTTIME);
|
||
|
|
||
|
if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) {
|
||
|
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_p,
|
||
|
CRYPTO_LOCK_RSA, &p, ctx) ||
|
||
|
!BN_MONT_CTX_set_locked(&rsa->_method_mod_q,
|
||
|
CRYPTO_LOCK_RSA, &q, ctx)) {
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
|
||
|
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n,
|
||
|
CRYPTO_LOCK_RSA, rsa->n, ctx))
|
||
|
goto err;
|
||
|
|
||
|
/* compute I mod q */
|
||
|
BN_init(&c);
|
||
|
BN_with_flags(&c, I, BN_FLG_CONSTTIME);
|
||
|
|
||
|
if (!BN_mod_ct(r1, &c, rsa->q, ctx))
|
||
|
goto err;
|
||
|
|
||
|
/* compute r1^dmq1 mod q */
|
||
|
BN_init(&dmq1);
|
||
|
BN_with_flags(&dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
|
||
|
|
||
|
if (!rsa->meth->bn_mod_exp(m1, r1, &dmq1, rsa->q, ctx,
|
||
|
rsa->_method_mod_q))
|
||
|
goto err;
|
||
|
|
||
|
/* compute I mod p */
|
||
|
BN_with_flags(&c, I, BN_FLG_CONSTTIME);
|
||
|
|
||
|
if (!BN_mod_ct(r1, &c, rsa->p, ctx))
|
||
|
goto err;
|
||
|
|
||
|
/* compute r1^dmp1 mod p */
|
||
|
BN_init(&dmp1);
|
||
|
BN_with_flags(&dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
|
||
|
|
||
|
if (!rsa->meth->bn_mod_exp(r0, r1, &dmp1, rsa->p, ctx,
|
||
|
rsa->_method_mod_p))
|
||
|
goto err;
|
||
|
|
||
|
if (!BN_sub(r0, r0, m1))
|
||
|
goto err;
|
||
|
|
||
|
/*
|
||
|
* This will help stop the size of r0 increasing, which does
|
||
|
* affect the multiply if it optimised for a power of 2 size
|
||
|
*/
|
||
|
if (BN_is_negative(r0))
|
||
|
if (!BN_add(r0, r0, rsa->p))
|
||
|
goto err;
|
||
|
|
||
|
if (!BN_mul(r1, r0, rsa->iqmp, ctx))
|
||
|
goto err;
|
||
|
|
||
|
/* Turn BN_FLG_CONSTTIME flag on before division operation */
|
||
|
BN_init(&pr1);
|
||
|
BN_with_flags(&pr1, r1, BN_FLG_CONSTTIME);
|
||
|
|
||
|
if (!BN_mod_ct(r0, &pr1, rsa->p, ctx))
|
||
|
goto err;
|
||
|
|
||
|
/*
|
||
|
* If p < q it is occasionally possible for the correction of
|
||
|
* adding 'p' if r0 is negative above to leave the result still
|
||
|
* negative. This can break the private key operations: the following
|
||
|
* second correction should *always* correct this rare occurrence.
|
||
|
* This will *never* happen with OpenSSL generated keys because
|
||
|
* they ensure p > q [steve]
|
||
|
*/
|
||
|
if (BN_is_negative(r0))
|
||
|
if (!BN_add(r0, r0, rsa->p))
|
||
|
goto err;
|
||
|
if (!BN_mul(r1, r0, rsa->q, ctx))
|
||
|
goto err;
|
||
|
if (!BN_add(r0, r1, m1))
|
||
|
goto err;
|
||
|
|
||
|
if (rsa->e && rsa->n) {
|
||
|
if (!rsa->meth->bn_mod_exp(vrfy, r0, rsa->e, rsa->n, ctx,
|
||
|
rsa->_method_mod_n))
|
||
|
goto err;
|
||
|
/*
|
||
|
* If 'I' was greater than (or equal to) rsa->n, the operation
|
||
|
* will be equivalent to using 'I mod n'. However, the result of
|
||
|
* the verify will *always* be less than 'n' so we don't check
|
||
|
* for absolute equality, just congruency.
|
||
|
*/
|
||
|
if (!BN_sub(vrfy, vrfy, I))
|
||
|
goto err;
|
||
|
if (!BN_mod_ct(vrfy, vrfy, rsa->n, ctx))
|
||
|
goto err;
|
||
|
if (BN_is_negative(vrfy))
|
||
|
if (!BN_add(vrfy, vrfy, rsa->n))
|
||
|
goto err;
|
||
|
if (!BN_is_zero(vrfy)) {
|
||
|
/*
|
||
|
* 'I' and 'vrfy' aren't congruent mod n. Don't leak
|
||
|
* miscalculated CRT output, just do a raw (slower)
|
||
|
* mod_exp and return that instead.
|
||
|
*/
|
||
|
BIGNUM d;
|
||
|
|
||
|
BN_init(&d);
|
||
|
BN_with_flags(&d, rsa->d, BN_FLG_CONSTTIME);
|
||
|
|
||
|
if (!rsa->meth->bn_mod_exp(r0, I, &d, rsa->n, ctx,
|
||
|
rsa->_method_mod_n)) {
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
ret = 1;
|
||
|
err:
|
||
|
BN_CTX_end(ctx);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
RSA_eay_init(RSA *rsa)
|
||
|
{
|
||
|
rsa->flags |= RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
RSA_eay_finish(RSA *rsa)
|
||
|
{
|
||
|
BN_MONT_CTX_free(rsa->_method_mod_n);
|
||
|
BN_MONT_CTX_free(rsa->_method_mod_p);
|
||
|
BN_MONT_CTX_free(rsa->_method_mod_q);
|
||
|
|
||
|
return 1;
|
||
|
}
|