mirror of
https://github.com/pineappleEA/pineapple-src.git
synced 2024-11-30 00:38:24 -05:00
174 lines
4.7 KiB
C
174 lines
4.7 KiB
C
|
/*
|
||
|
* principal component analysis (PCA)
|
||
|
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
|
||
|
*
|
||
|
* This file is part of FFmpeg.
|
||
|
*
|
||
|
* FFmpeg is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Lesser General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2.1 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* FFmpeg is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Lesser General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Lesser General Public
|
||
|
* License along with FFmpeg; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @file
|
||
|
* principal component analysis (PCA)
|
||
|
*/
|
||
|
|
||
|
#include "common.h"
|
||
|
#include "pca.h"
|
||
|
|
||
|
typedef struct PCA{
|
||
|
int count;
|
||
|
int n;
|
||
|
double *covariance;
|
||
|
double *mean;
|
||
|
double *z;
|
||
|
}PCA;
|
||
|
|
||
|
PCA *ff_pca_init(int n){
|
||
|
PCA *pca;
|
||
|
if(n<=0)
|
||
|
return NULL;
|
||
|
|
||
|
pca= av_mallocz(sizeof(*pca));
|
||
|
if (!pca)
|
||
|
return NULL;
|
||
|
|
||
|
pca->n= n;
|
||
|
pca->z = av_malloc_array(n, sizeof(*pca->z));
|
||
|
pca->count=0;
|
||
|
pca->covariance= av_calloc(n*n, sizeof(double));
|
||
|
pca->mean= av_calloc(n, sizeof(double));
|
||
|
|
||
|
if (!pca->z || !pca->covariance || !pca->mean) {
|
||
|
ff_pca_free(pca);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
return pca;
|
||
|
}
|
||
|
|
||
|
void ff_pca_free(PCA *pca){
|
||
|
av_freep(&pca->covariance);
|
||
|
av_freep(&pca->mean);
|
||
|
av_freep(&pca->z);
|
||
|
av_free(pca);
|
||
|
}
|
||
|
|
||
|
void ff_pca_add(PCA *pca, const double *v){
|
||
|
int i, j;
|
||
|
const int n= pca->n;
|
||
|
|
||
|
for(i=0; i<n; i++){
|
||
|
pca->mean[i] += v[i];
|
||
|
for(j=i; j<n; j++)
|
||
|
pca->covariance[j + i*n] += v[i]*v[j];
|
||
|
}
|
||
|
pca->count++;
|
||
|
}
|
||
|
|
||
|
int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){
|
||
|
int i, j, pass;
|
||
|
int k=0;
|
||
|
const int n= pca->n;
|
||
|
double *z = pca->z;
|
||
|
|
||
|
memset(eigenvector, 0, sizeof(double)*n*n);
|
||
|
|
||
|
for(j=0; j<n; j++){
|
||
|
pca->mean[j] /= pca->count;
|
||
|
eigenvector[j + j*n] = 1.0;
|
||
|
for(i=0; i<=j; i++){
|
||
|
pca->covariance[j + i*n] /= pca->count;
|
||
|
pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j];
|
||
|
pca->covariance[i + j*n] = pca->covariance[j + i*n];
|
||
|
}
|
||
|
eigenvalue[j]= pca->covariance[j + j*n];
|
||
|
z[j]= 0;
|
||
|
}
|
||
|
|
||
|
for(pass=0; pass < 50; pass++){
|
||
|
double sum=0;
|
||
|
|
||
|
for(i=0; i<n; i++)
|
||
|
for(j=i+1; j<n; j++)
|
||
|
sum += fabs(pca->covariance[j + i*n]);
|
||
|
|
||
|
if(sum == 0){
|
||
|
for(i=0; i<n; i++){
|
||
|
double maxvalue= -1;
|
||
|
for(j=i; j<n; j++){
|
||
|
if(eigenvalue[j] > maxvalue){
|
||
|
maxvalue= eigenvalue[j];
|
||
|
k= j;
|
||
|
}
|
||
|
}
|
||
|
eigenvalue[k]= eigenvalue[i];
|
||
|
eigenvalue[i]= maxvalue;
|
||
|
for(j=0; j<n; j++){
|
||
|
double tmp= eigenvector[k + j*n];
|
||
|
eigenvector[k + j*n]= eigenvector[i + j*n];
|
||
|
eigenvector[i + j*n]= tmp;
|
||
|
}
|
||
|
}
|
||
|
return pass;
|
||
|
}
|
||
|
|
||
|
for(i=0; i<n; i++){
|
||
|
for(j=i+1; j<n; j++){
|
||
|
double covar= pca->covariance[j + i*n];
|
||
|
double t,c,s,tau,theta, h;
|
||
|
|
||
|
if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3
|
||
|
continue;
|
||
|
if(fabs(covar) == 0.0) //FIXME should not be needed
|
||
|
continue;
|
||
|
if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){
|
||
|
pca->covariance[j + i*n]=0.0;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]);
|
||
|
theta=0.5*h/covar;
|
||
|
t=1.0/(fabs(theta)+sqrt(1.0+theta*theta));
|
||
|
if(theta < 0.0) t = -t;
|
||
|
|
||
|
c=1.0/sqrt(1+t*t);
|
||
|
s=t*c;
|
||
|
tau=s/(1.0+c);
|
||
|
z[i] -= t*covar;
|
||
|
z[j] += t*covar;
|
||
|
|
||
|
#define ROTATE(a,i,j,k,l) {\
|
||
|
double g=a[j + i*n];\
|
||
|
double h=a[l + k*n];\
|
||
|
a[j + i*n]=g-s*(h+g*tau);\
|
||
|
a[l + k*n]=h+s*(g-h*tau); }
|
||
|
for(k=0; k<n; k++) {
|
||
|
if(k!=i && k!=j){
|
||
|
ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j))
|
||
|
}
|
||
|
ROTATE(eigenvector,k,i,k,j)
|
||
|
}
|
||
|
pca->covariance[j + i*n]=0.0;
|
||
|
}
|
||
|
}
|
||
|
for (i=0; i<n; i++) {
|
||
|
eigenvalue[i] += z[i];
|
||
|
z[i]=0.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return -1;
|
||
|
}
|