mirror of
https://github.com/vanhoefm/fragattacks.git
synced 2025-01-20 20:04:01 -05:00
876c5eaa6d
Disable groups that use Brainpool curves for now since they leak more timing information due to the prime not being close to a power of two. This removes use of groups 28, 29, and 30 from SAE and EAP-pwd. Signed-off-by: Jouni Malinen <j@w1.fi>
216 lines
5.7 KiB
C
216 lines
5.7 KiB
C
/*
|
|
* Shared Dragonfly functionality
|
|
* Copyright (c) 2012-2016, Jouni Malinen <j@w1.fi>
|
|
* Copyright (c) 2019, The Linux Foundation
|
|
*
|
|
* This software may be distributed under the terms of the BSD license.
|
|
* See README for more details.
|
|
*/
|
|
|
|
#include "utils/includes.h"
|
|
|
|
#include "utils/common.h"
|
|
#include "utils/const_time.h"
|
|
#include "crypto/crypto.h"
|
|
#include "dragonfly.h"
|
|
|
|
|
|
int dragonfly_suitable_group(int group, int ecc_only)
|
|
{
|
|
/* Enforce REVmd rules on which SAE groups are suitable for production
|
|
* purposes: FFC groups whose prime is >= 3072 bits and ECC groups
|
|
* defined over a prime field whose prime is >= 256 bits. Furthermore,
|
|
* ECC groups defined over a characteristic 2 finite field and ECC
|
|
* groups with a co-factor greater than 1 are not suitable. Disable
|
|
* groups that use Brainpool curves as well for now since they leak more
|
|
* timing information due to the prime not being close to a power of
|
|
* two. */
|
|
return group == 19 || group == 20 || group == 21 ||
|
|
(!ecc_only &&
|
|
(group == 15 || group == 16 || group == 17 || group == 18));
|
|
}
|
|
|
|
|
|
unsigned int dragonfly_min_pwe_loop_iter(int group)
|
|
{
|
|
if (group == 22 || group == 23 || group == 24) {
|
|
/* FFC groups for which pwd-value is likely to be >= p
|
|
* frequently */
|
|
return 40;
|
|
}
|
|
|
|
if (group == 1 || group == 2 || group == 5 || group == 14 ||
|
|
group == 15 || group == 16 || group == 17 || group == 18) {
|
|
/* FFC groups that have prime that is close to a power of two */
|
|
return 1;
|
|
}
|
|
|
|
/* Default to 40 (this covers most ECC groups) */
|
|
return 40;
|
|
}
|
|
|
|
|
|
int dragonfly_get_random_qr_qnr(const struct crypto_bignum *prime,
|
|
struct crypto_bignum **qr,
|
|
struct crypto_bignum **qnr)
|
|
{
|
|
*qr = *qnr = NULL;
|
|
|
|
while (!(*qr) || !(*qnr)) {
|
|
struct crypto_bignum *tmp;
|
|
int res;
|
|
|
|
tmp = crypto_bignum_init();
|
|
if (!tmp || crypto_bignum_rand(tmp, prime) < 0) {
|
|
crypto_bignum_deinit(tmp, 0);
|
|
break;
|
|
}
|
|
|
|
res = crypto_bignum_legendre(tmp, prime);
|
|
if (res == 1 && !(*qr))
|
|
*qr = tmp;
|
|
else if (res == -1 && !(*qnr))
|
|
*qnr = tmp;
|
|
else
|
|
crypto_bignum_deinit(tmp, 0);
|
|
}
|
|
|
|
if (*qr && *qnr)
|
|
return 0;
|
|
crypto_bignum_deinit(*qr, 0);
|
|
crypto_bignum_deinit(*qnr, 0);
|
|
*qr = *qnr = NULL;
|
|
return -1;
|
|
}
|
|
|
|
|
|
static struct crypto_bignum *
|
|
dragonfly_get_rand_1_to_p_1(const struct crypto_bignum *prime)
|
|
{
|
|
struct crypto_bignum *tmp, *pm1, *one;
|
|
|
|
tmp = crypto_bignum_init();
|
|
pm1 = crypto_bignum_init();
|
|
one = crypto_bignum_init_set((const u8 *) "\x01", 1);
|
|
if (!tmp || !pm1 || !one ||
|
|
crypto_bignum_sub(prime, one, pm1) < 0 ||
|
|
crypto_bignum_rand(tmp, pm1) < 0 ||
|
|
crypto_bignum_add(tmp, one, tmp) < 0) {
|
|
crypto_bignum_deinit(tmp, 0);
|
|
tmp = NULL;
|
|
}
|
|
|
|
crypto_bignum_deinit(pm1, 0);
|
|
crypto_bignum_deinit(one, 0);
|
|
return tmp;
|
|
}
|
|
|
|
|
|
int dragonfly_is_quadratic_residue_blind(struct crypto_ec *ec,
|
|
const u8 *qr, const u8 *qnr,
|
|
const struct crypto_bignum *val)
|
|
{
|
|
struct crypto_bignum *r, *num, *qr_or_qnr = NULL;
|
|
int check, res = -1;
|
|
u8 qr_or_qnr_bin[DRAGONFLY_MAX_ECC_PRIME_LEN];
|
|
const struct crypto_bignum *prime;
|
|
size_t prime_len;
|
|
unsigned int mask;
|
|
|
|
prime = crypto_ec_get_prime(ec);
|
|
prime_len = crypto_ec_prime_len(ec);
|
|
|
|
/*
|
|
* Use a blinding technique to mask val while determining whether it is
|
|
* a quadratic residue modulo p to avoid leaking timing information
|
|
* while determining the Legendre symbol.
|
|
*
|
|
* v = val
|
|
* r = a random number between 1 and p-1, inclusive
|
|
* num = (v * r * r) modulo p
|
|
*/
|
|
r = dragonfly_get_rand_1_to_p_1(prime);
|
|
if (!r)
|
|
return -1;
|
|
|
|
num = crypto_bignum_init();
|
|
if (!num ||
|
|
crypto_bignum_mulmod(val, r, prime, num) < 0 ||
|
|
crypto_bignum_mulmod(num, r, prime, num) < 0)
|
|
goto fail;
|
|
|
|
/*
|
|
* Need to minimize differences in handling different cases, so try to
|
|
* avoid branches and timing differences.
|
|
*
|
|
* If r is odd:
|
|
* num = (num * qr) module p
|
|
* LGR(num, p) = 1 ==> quadratic residue
|
|
* else:
|
|
* num = (num * qnr) module p
|
|
* LGR(num, p) = -1 ==> quadratic residue
|
|
*
|
|
* mask is set to !odd(r)
|
|
*/
|
|
mask = const_time_is_zero(crypto_bignum_is_odd(r));
|
|
const_time_select_bin(mask, qnr, qr, prime_len, qr_or_qnr_bin);
|
|
qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, prime_len);
|
|
if (!qr_or_qnr ||
|
|
crypto_bignum_mulmod(num, qr_or_qnr, prime, num) < 0)
|
|
goto fail;
|
|
/* branchless version of check = odd(r) ? 1 : -1, */
|
|
check = const_time_select_int(mask, -1, 1);
|
|
|
|
/* Determine the Legendre symbol on the masked value */
|
|
res = crypto_bignum_legendre(num, prime);
|
|
if (res == -2) {
|
|
res = -1;
|
|
goto fail;
|
|
}
|
|
/* branchless version of res = res == check
|
|
* (res is -1, 0, or 1; check is -1 or 1) */
|
|
mask = const_time_eq(res, check);
|
|
res = const_time_select_int(mask, 1, 0);
|
|
fail:
|
|
crypto_bignum_deinit(num, 1);
|
|
crypto_bignum_deinit(r, 1);
|
|
crypto_bignum_deinit(qr_or_qnr, 1);
|
|
return res;
|
|
}
|
|
|
|
|
|
static int dragonfly_get_rand_2_to_r_1(struct crypto_bignum *val,
|
|
const struct crypto_bignum *order)
|
|
{
|
|
return crypto_bignum_rand(val, order) == 0 &&
|
|
!crypto_bignum_is_zero(val) &&
|
|
!crypto_bignum_is_one(val);
|
|
}
|
|
|
|
|
|
int dragonfly_generate_scalar(const struct crypto_bignum *order,
|
|
struct crypto_bignum *_rand,
|
|
struct crypto_bignum *_mask,
|
|
struct crypto_bignum *scalar)
|
|
{
|
|
int count;
|
|
|
|
/* Select two random values rand,mask such that 1 < rand,mask < r and
|
|
* rand + mask mod r > 1. */
|
|
for (count = 0; count < 100; count++) {
|
|
if (dragonfly_get_rand_2_to_r_1(_rand, order) &&
|
|
dragonfly_get_rand_2_to_r_1(_mask, order) &&
|
|
crypto_bignum_add(_rand, _mask, scalar) == 0 &&
|
|
crypto_bignum_mod(scalar, order, scalar) == 0 &&
|
|
!crypto_bignum_is_zero(scalar) &&
|
|
!crypto_bignum_is_one(scalar))
|
|
return 0;
|
|
}
|
|
|
|
/* This should not be reachable in practice if the random number
|
|
* generation is working. */
|
|
wpa_printf(MSG_INFO,
|
|
"dragonfly: Unable to get randomness for own scalar");
|
|
return -1;
|
|
}
|