mirror of
https://github.com/vanhoefm/fragattacks.git
synced 2024-11-27 01:38:37 -05:00
0f3d578efc
Remove the GPL notification text from the files that were initially contributed by myself. Signed-hostap: Jouni Malinen <j@w1.fi>
273 lines
7.9 KiB
C
273 lines
7.9 KiB
C
/*
|
|
* MD4 hash implementation
|
|
* Copyright (c) 2006, Jouni Malinen <j@w1.fi>
|
|
*
|
|
* This software may be distributed under the terms of the BSD license.
|
|
* See README for more details.
|
|
*/
|
|
|
|
#include "includes.h"
|
|
|
|
#include "common.h"
|
|
#include "crypto.h"
|
|
|
|
#define MD4_BLOCK_LENGTH 64
|
|
#define MD4_DIGEST_LENGTH 16
|
|
|
|
typedef struct MD4Context {
|
|
u32 state[4]; /* state */
|
|
u64 count; /* number of bits, mod 2^64 */
|
|
u8 buffer[MD4_BLOCK_LENGTH]; /* input buffer */
|
|
} MD4_CTX;
|
|
|
|
|
|
static void MD4Init(MD4_CTX *ctx);
|
|
static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len);
|
|
static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx);
|
|
|
|
|
|
int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
|
|
{
|
|
MD4_CTX ctx;
|
|
size_t i;
|
|
|
|
MD4Init(&ctx);
|
|
for (i = 0; i < num_elem; i++)
|
|
MD4Update(&ctx, addr[i], len[i]);
|
|
MD4Final(mac, &ctx);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* ===== start - public domain MD4 implementation ===== */
|
|
/* $OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $ */
|
|
|
|
/*
|
|
* This code implements the MD4 message-digest algorithm.
|
|
* The algorithm is due to Ron Rivest. This code was
|
|
* written by Colin Plumb in 1993, no copyright is claimed.
|
|
* This code is in the public domain; do with it what you wish.
|
|
* Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186.
|
|
*
|
|
* Equivalent code is available from RSA Data Security, Inc.
|
|
* This code has been tested against that, and is equivalent,
|
|
* except that you don't need to include two pages of legalese
|
|
* with every copy.
|
|
*
|
|
* To compute the message digest of a chunk of bytes, declare an
|
|
* MD4Context structure, pass it to MD4Init, call MD4Update as
|
|
* needed on buffers full of bytes, and then call MD4Final, which
|
|
* will fill a supplied 16-byte array with the digest.
|
|
*/
|
|
|
|
#define MD4_DIGEST_STRING_LENGTH (MD4_DIGEST_LENGTH * 2 + 1)
|
|
|
|
|
|
static void
|
|
MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]);
|
|
|
|
#define PUT_64BIT_LE(cp, value) do { \
|
|
(cp)[7] = (value) >> 56; \
|
|
(cp)[6] = (value) >> 48; \
|
|
(cp)[5] = (value) >> 40; \
|
|
(cp)[4] = (value) >> 32; \
|
|
(cp)[3] = (value) >> 24; \
|
|
(cp)[2] = (value) >> 16; \
|
|
(cp)[1] = (value) >> 8; \
|
|
(cp)[0] = (value); } while (0)
|
|
|
|
#define PUT_32BIT_LE(cp, value) do { \
|
|
(cp)[3] = (value) >> 24; \
|
|
(cp)[2] = (value) >> 16; \
|
|
(cp)[1] = (value) >> 8; \
|
|
(cp)[0] = (value); } while (0)
|
|
|
|
static u8 PADDING[MD4_BLOCK_LENGTH] = {
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
/*
|
|
* Start MD4 accumulation.
|
|
* Set bit count to 0 and buffer to mysterious initialization constants.
|
|
*/
|
|
static void MD4Init(MD4_CTX *ctx)
|
|
{
|
|
ctx->count = 0;
|
|
ctx->state[0] = 0x67452301;
|
|
ctx->state[1] = 0xefcdab89;
|
|
ctx->state[2] = 0x98badcfe;
|
|
ctx->state[3] = 0x10325476;
|
|
}
|
|
|
|
/*
|
|
* Update context to reflect the concatenation of another buffer full
|
|
* of bytes.
|
|
*/
|
|
static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len)
|
|
{
|
|
size_t have, need;
|
|
|
|
/* Check how many bytes we already have and how many more we need. */
|
|
have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
|
|
need = MD4_BLOCK_LENGTH - have;
|
|
|
|
/* Update bitcount */
|
|
ctx->count += (u64)len << 3;
|
|
|
|
if (len >= need) {
|
|
if (have != 0) {
|
|
os_memcpy(ctx->buffer + have, input, need);
|
|
MD4Transform(ctx->state, ctx->buffer);
|
|
input += need;
|
|
len -= need;
|
|
have = 0;
|
|
}
|
|
|
|
/* Process data in MD4_BLOCK_LENGTH-byte chunks. */
|
|
while (len >= MD4_BLOCK_LENGTH) {
|
|
MD4Transform(ctx->state, input);
|
|
input += MD4_BLOCK_LENGTH;
|
|
len -= MD4_BLOCK_LENGTH;
|
|
}
|
|
}
|
|
|
|
/* Handle any remaining bytes of data. */
|
|
if (len != 0)
|
|
os_memcpy(ctx->buffer + have, input, len);
|
|
}
|
|
|
|
/*
|
|
* Pad pad to 64-byte boundary with the bit pattern
|
|
* 1 0* (64-bit count of bits processed, MSB-first)
|
|
*/
|
|
static void MD4Pad(MD4_CTX *ctx)
|
|
{
|
|
u8 count[8];
|
|
size_t padlen;
|
|
|
|
/* Convert count to 8 bytes in little endian order. */
|
|
PUT_64BIT_LE(count, ctx->count);
|
|
|
|
/* Pad out to 56 mod 64. */
|
|
padlen = MD4_BLOCK_LENGTH -
|
|
((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
|
|
if (padlen < 1 + 8)
|
|
padlen += MD4_BLOCK_LENGTH;
|
|
MD4Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
|
|
MD4Update(ctx, count, 8);
|
|
}
|
|
|
|
/*
|
|
* Final wrapup--call MD4Pad, fill in digest and zero out ctx.
|
|
*/
|
|
static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx)
|
|
{
|
|
int i;
|
|
|
|
MD4Pad(ctx);
|
|
if (digest != NULL) {
|
|
for (i = 0; i < 4; i++)
|
|
PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
|
|
os_memset(ctx, 0, sizeof(*ctx));
|
|
}
|
|
}
|
|
|
|
|
|
/* The three core functions - F1 is optimized somewhat */
|
|
|
|
/* #define F1(x, y, z) (x & y | ~x & z) */
|
|
#define F1(x, y, z) (z ^ (x & (y ^ z)))
|
|
#define F2(x, y, z) ((x & y) | (x & z) | (y & z))
|
|
#define F3(x, y, z) (x ^ y ^ z)
|
|
|
|
/* This is the central step in the MD4 algorithm. */
|
|
#define MD4STEP(f, w, x, y, z, data, s) \
|
|
( w += f(x, y, z) + data, w = w<<s | w>>(32-s) )
|
|
|
|
/*
|
|
* The core of the MD4 algorithm, this alters an existing MD4 hash to
|
|
* reflect the addition of 16 longwords of new data. MD4Update blocks
|
|
* the data and converts bytes into longwords for this routine.
|
|
*/
|
|
static void
|
|
MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH])
|
|
{
|
|
u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4];
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
os_memcpy(in, block, sizeof(in));
|
|
#else
|
|
for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) {
|
|
in[a] = (u32)(
|
|
(u32)(block[a * 4 + 0]) |
|
|
(u32)(block[a * 4 + 1]) << 8 |
|
|
(u32)(block[a * 4 + 2]) << 16 |
|
|
(u32)(block[a * 4 + 3]) << 24);
|
|
}
|
|
#endif
|
|
|
|
a = state[0];
|
|
b = state[1];
|
|
c = state[2];
|
|
d = state[3];
|
|
|
|
MD4STEP(F1, a, b, c, d, in[ 0], 3);
|
|
MD4STEP(F1, d, a, b, c, in[ 1], 7);
|
|
MD4STEP(F1, c, d, a, b, in[ 2], 11);
|
|
MD4STEP(F1, b, c, d, a, in[ 3], 19);
|
|
MD4STEP(F1, a, b, c, d, in[ 4], 3);
|
|
MD4STEP(F1, d, a, b, c, in[ 5], 7);
|
|
MD4STEP(F1, c, d, a, b, in[ 6], 11);
|
|
MD4STEP(F1, b, c, d, a, in[ 7], 19);
|
|
MD4STEP(F1, a, b, c, d, in[ 8], 3);
|
|
MD4STEP(F1, d, a, b, c, in[ 9], 7);
|
|
MD4STEP(F1, c, d, a, b, in[10], 11);
|
|
MD4STEP(F1, b, c, d, a, in[11], 19);
|
|
MD4STEP(F1, a, b, c, d, in[12], 3);
|
|
MD4STEP(F1, d, a, b, c, in[13], 7);
|
|
MD4STEP(F1, c, d, a, b, in[14], 11);
|
|
MD4STEP(F1, b, c, d, a, in[15], 19);
|
|
|
|
MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999, 3);
|
|
MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999, 5);
|
|
MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999, 9);
|
|
MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13);
|
|
MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999, 3);
|
|
MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999, 5);
|
|
MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999, 9);
|
|
MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13);
|
|
MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999, 3);
|
|
MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999, 5);
|
|
MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999, 9);
|
|
MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13);
|
|
MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999, 3);
|
|
MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999, 5);
|
|
MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999, 9);
|
|
MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13);
|
|
|
|
MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1, 3);
|
|
MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1, 9);
|
|
MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11);
|
|
MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15);
|
|
MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1, 3);
|
|
MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1, 9);
|
|
MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11);
|
|
MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15);
|
|
MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1, 3);
|
|
MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1, 9);
|
|
MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11);
|
|
MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15);
|
|
MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1, 3);
|
|
MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1, 9);
|
|
MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11);
|
|
MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15);
|
|
|
|
state[0] += a;
|
|
state[1] += b;
|
|
state[2] += c;
|
|
state[3] += d;
|
|
}
|
|
/* ===== end - public domain MD4 implementation ===== */
|