fragattacks/src/tls/tlsv1_common.c
Jouni Malinen b115eebe01 TLS: Add TLS v1.2 signature algorithm support for SHA384 and SHA512
This extends the internal TLS client implementation to support signature
algorithms SHA384 and SHA512 in addition to the previously supported
SHA256.

Signed-off-by: Jouni Malinen <j@w1.fi>
2015-11-29 18:21:08 +02:00

524 lines
15 KiB
C

/*
* TLSv1 common routines
* Copyright (c) 2006-2014, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
#include "common.h"
#include "crypto/md5.h"
#include "crypto/sha1.h"
#include "crypto/sha256.h"
#include "x509v3.h"
#include "tlsv1_common.h"
/*
* TODO:
* RFC 2246 Section 9: Mandatory to implement TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
* Add support for commonly used cipher suites; don't bother with exportable
* suites.
*/
static const struct tls_cipher_suite tls_cipher_suites[] = {
{ TLS_NULL_WITH_NULL_NULL, TLS_KEY_X_NULL, TLS_CIPHER_NULL,
TLS_HASH_NULL },
{ TLS_RSA_WITH_RC4_128_MD5, TLS_KEY_X_RSA, TLS_CIPHER_RC4_128,
TLS_HASH_MD5 },
{ TLS_RSA_WITH_RC4_128_SHA, TLS_KEY_X_RSA, TLS_CIPHER_RC4_128,
TLS_HASH_SHA },
{ TLS_RSA_WITH_DES_CBC_SHA, TLS_KEY_X_RSA, TLS_CIPHER_DES_CBC,
TLS_HASH_SHA },
{ TLS_RSA_WITH_3DES_EDE_CBC_SHA, TLS_KEY_X_RSA,
TLS_CIPHER_3DES_EDE_CBC, TLS_HASH_SHA },
{ TLS_DHE_RSA_WITH_DES_CBC_SHA, TLS_KEY_X_DHE_RSA, TLS_CIPHER_DES_CBC,
TLS_HASH_SHA},
{ TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA, TLS_KEY_X_DHE_RSA,
TLS_CIPHER_3DES_EDE_CBC, TLS_HASH_SHA },
{ TLS_DH_anon_WITH_RC4_128_MD5, TLS_KEY_X_DH_anon,
TLS_CIPHER_RC4_128, TLS_HASH_MD5 },
{ TLS_DH_anon_WITH_DES_CBC_SHA, TLS_KEY_X_DH_anon,
TLS_CIPHER_DES_CBC, TLS_HASH_SHA },
{ TLS_DH_anon_WITH_3DES_EDE_CBC_SHA, TLS_KEY_X_DH_anon,
TLS_CIPHER_3DES_EDE_CBC, TLS_HASH_SHA },
{ TLS_RSA_WITH_AES_128_CBC_SHA, TLS_KEY_X_RSA, TLS_CIPHER_AES_128_CBC,
TLS_HASH_SHA },
{ TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_KEY_X_DHE_RSA,
TLS_CIPHER_AES_128_CBC, TLS_HASH_SHA },
{ TLS_DH_anon_WITH_AES_128_CBC_SHA, TLS_KEY_X_DH_anon,
TLS_CIPHER_AES_128_CBC, TLS_HASH_SHA },
{ TLS_RSA_WITH_AES_256_CBC_SHA, TLS_KEY_X_RSA, TLS_CIPHER_AES_256_CBC,
TLS_HASH_SHA },
{ TLS_DHE_RSA_WITH_AES_256_CBC_SHA, TLS_KEY_X_DHE_RSA,
TLS_CIPHER_AES_256_CBC, TLS_HASH_SHA },
{ TLS_DH_anon_WITH_AES_256_CBC_SHA, TLS_KEY_X_DH_anon,
TLS_CIPHER_AES_256_CBC, TLS_HASH_SHA },
{ TLS_RSA_WITH_AES_128_CBC_SHA256, TLS_KEY_X_RSA,
TLS_CIPHER_AES_128_CBC, TLS_HASH_SHA256 },
{ TLS_RSA_WITH_AES_256_CBC_SHA256, TLS_KEY_X_RSA,
TLS_CIPHER_AES_256_CBC, TLS_HASH_SHA256 },
{ TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, TLS_KEY_X_DHE_RSA,
TLS_CIPHER_AES_128_CBC, TLS_HASH_SHA256 },
{ TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, TLS_KEY_X_DHE_RSA,
TLS_CIPHER_AES_256_CBC, TLS_HASH_SHA256 },
{ TLS_DH_anon_WITH_AES_128_CBC_SHA256, TLS_KEY_X_DH_anon,
TLS_CIPHER_AES_128_CBC, TLS_HASH_SHA256 },
{ TLS_DH_anon_WITH_AES_256_CBC_SHA256, TLS_KEY_X_DH_anon,
TLS_CIPHER_AES_256_CBC, TLS_HASH_SHA256 }
};
#define NUM_TLS_CIPHER_SUITES ARRAY_SIZE(tls_cipher_suites)
static const struct tls_cipher_data tls_ciphers[] = {
{ TLS_CIPHER_NULL, TLS_CIPHER_STREAM, 0, 0, 0,
CRYPTO_CIPHER_NULL },
{ TLS_CIPHER_IDEA_CBC, TLS_CIPHER_BLOCK, 16, 16, 8,
CRYPTO_CIPHER_NULL },
{ TLS_CIPHER_RC2_CBC_40, TLS_CIPHER_BLOCK, 5, 16, 0,
CRYPTO_CIPHER_ALG_RC2 },
{ TLS_CIPHER_RC4_40, TLS_CIPHER_STREAM, 5, 16, 0,
CRYPTO_CIPHER_ALG_RC4 },
{ TLS_CIPHER_RC4_128, TLS_CIPHER_STREAM, 16, 16, 0,
CRYPTO_CIPHER_ALG_RC4 },
{ TLS_CIPHER_DES40_CBC, TLS_CIPHER_BLOCK, 5, 8, 8,
CRYPTO_CIPHER_ALG_DES },
{ TLS_CIPHER_DES_CBC, TLS_CIPHER_BLOCK, 8, 8, 8,
CRYPTO_CIPHER_ALG_DES },
{ TLS_CIPHER_3DES_EDE_CBC, TLS_CIPHER_BLOCK, 24, 24, 8,
CRYPTO_CIPHER_ALG_3DES },
{ TLS_CIPHER_AES_128_CBC, TLS_CIPHER_BLOCK, 16, 16, 16,
CRYPTO_CIPHER_ALG_AES },
{ TLS_CIPHER_AES_256_CBC, TLS_CIPHER_BLOCK, 32, 32, 16,
CRYPTO_CIPHER_ALG_AES }
};
#define NUM_TLS_CIPHER_DATA ARRAY_SIZE(tls_ciphers)
/**
* tls_get_cipher_suite - Get TLS cipher suite
* @suite: Cipher suite identifier
* Returns: Pointer to the cipher data or %NULL if not found
*/
const struct tls_cipher_suite * tls_get_cipher_suite(u16 suite)
{
size_t i;
for (i = 0; i < NUM_TLS_CIPHER_SUITES; i++)
if (tls_cipher_suites[i].suite == suite)
return &tls_cipher_suites[i];
return NULL;
}
const struct tls_cipher_data * tls_get_cipher_data(tls_cipher cipher)
{
size_t i;
for (i = 0; i < NUM_TLS_CIPHER_DATA; i++)
if (tls_ciphers[i].cipher == cipher)
return &tls_ciphers[i];
return NULL;
}
int tls_server_key_exchange_allowed(tls_cipher cipher)
{
const struct tls_cipher_suite *suite;
/* RFC 2246, Section 7.4.3 */
suite = tls_get_cipher_suite(cipher);
if (suite == NULL)
return 0;
switch (suite->key_exchange) {
case TLS_KEY_X_DHE_DSS:
case TLS_KEY_X_DHE_DSS_EXPORT:
case TLS_KEY_X_DHE_RSA:
case TLS_KEY_X_DHE_RSA_EXPORT:
case TLS_KEY_X_DH_anon_EXPORT:
case TLS_KEY_X_DH_anon:
return 1;
case TLS_KEY_X_RSA_EXPORT:
return 1 /* FIX: public key len > 512 bits */;
default:
return 0;
}
}
/**
* tls_parse_cert - Parse DER encoded X.509 certificate and get public key
* @buf: ASN.1 DER encoded certificate
* @len: Length of the buffer
* @pk: Buffer for returning the allocated public key
* Returns: 0 on success, -1 on failure
*
* This functions parses an ASN.1 DER encoded X.509 certificate and retrieves
* the public key from it. The caller is responsible for freeing the public key
* by calling crypto_public_key_free().
*/
int tls_parse_cert(const u8 *buf, size_t len, struct crypto_public_key **pk)
{
struct x509_certificate *cert;
wpa_hexdump(MSG_MSGDUMP, "TLSv1: Parse ASN.1 DER certificate",
buf, len);
*pk = crypto_public_key_from_cert(buf, len);
if (*pk)
return 0;
cert = x509_certificate_parse(buf, len);
if (cert == NULL) {
wpa_printf(MSG_DEBUG, "TLSv1: Failed to parse X.509 "
"certificate");
return -1;
}
/* TODO
* verify key usage (must allow encryption)
*
* All certificate profiles, key and cryptographic formats are
* defined by the IETF PKIX working group [PKIX]. When a key
* usage extension is present, the digitalSignature bit must be
* set for the key to be eligible for signing, as described
* above, and the keyEncipherment bit must be present to allow
* encryption, as described above. The keyAgreement bit must be
* set on Diffie-Hellman certificates. (PKIX: RFC 3280)
*/
*pk = crypto_public_key_import(cert->public_key, cert->public_key_len);
x509_certificate_free(cert);
if (*pk == NULL) {
wpa_printf(MSG_ERROR, "TLSv1: Failed to import "
"server public key");
return -1;
}
return 0;
}
int tls_verify_hash_init(struct tls_verify_hash *verify)
{
tls_verify_hash_free(verify);
verify->md5_client = crypto_hash_init(CRYPTO_HASH_ALG_MD5, NULL, 0);
verify->md5_server = crypto_hash_init(CRYPTO_HASH_ALG_MD5, NULL, 0);
verify->md5_cert = crypto_hash_init(CRYPTO_HASH_ALG_MD5, NULL, 0);
verify->sha1_client = crypto_hash_init(CRYPTO_HASH_ALG_SHA1, NULL, 0);
verify->sha1_server = crypto_hash_init(CRYPTO_HASH_ALG_SHA1, NULL, 0);
verify->sha1_cert = crypto_hash_init(CRYPTO_HASH_ALG_SHA1, NULL, 0);
if (verify->md5_client == NULL || verify->md5_server == NULL ||
verify->md5_cert == NULL || verify->sha1_client == NULL ||
verify->sha1_server == NULL || verify->sha1_cert == NULL) {
tls_verify_hash_free(verify);
return -1;
}
#ifdef CONFIG_TLSV12
verify->sha256_client = crypto_hash_init(CRYPTO_HASH_ALG_SHA256, NULL,
0);
verify->sha256_server = crypto_hash_init(CRYPTO_HASH_ALG_SHA256, NULL,
0);
verify->sha256_cert = crypto_hash_init(CRYPTO_HASH_ALG_SHA256, NULL,
0);
if (verify->sha256_client == NULL || verify->sha256_server == NULL ||
verify->sha256_cert == NULL) {
tls_verify_hash_free(verify);
return -1;
}
#endif /* CONFIG_TLSV12 */
return 0;
}
void tls_verify_hash_add(struct tls_verify_hash *verify, const u8 *buf,
size_t len)
{
if (verify->md5_client && verify->sha1_client) {
crypto_hash_update(verify->md5_client, buf, len);
crypto_hash_update(verify->sha1_client, buf, len);
}
if (verify->md5_server && verify->sha1_server) {
crypto_hash_update(verify->md5_server, buf, len);
crypto_hash_update(verify->sha1_server, buf, len);
}
if (verify->md5_cert && verify->sha1_cert) {
crypto_hash_update(verify->md5_cert, buf, len);
crypto_hash_update(verify->sha1_cert, buf, len);
}
#ifdef CONFIG_TLSV12
if (verify->sha256_client)
crypto_hash_update(verify->sha256_client, buf, len);
if (verify->sha256_server)
crypto_hash_update(verify->sha256_server, buf, len);
if (verify->sha256_cert)
crypto_hash_update(verify->sha256_cert, buf, len);
#endif /* CONFIG_TLSV12 */
}
void tls_verify_hash_free(struct tls_verify_hash *verify)
{
crypto_hash_finish(verify->md5_client, NULL, NULL);
crypto_hash_finish(verify->md5_server, NULL, NULL);
crypto_hash_finish(verify->md5_cert, NULL, NULL);
crypto_hash_finish(verify->sha1_client, NULL, NULL);
crypto_hash_finish(verify->sha1_server, NULL, NULL);
crypto_hash_finish(verify->sha1_cert, NULL, NULL);
verify->md5_client = NULL;
verify->md5_server = NULL;
verify->md5_cert = NULL;
verify->sha1_client = NULL;
verify->sha1_server = NULL;
verify->sha1_cert = NULL;
#ifdef CONFIG_TLSV12
crypto_hash_finish(verify->sha256_client, NULL, NULL);
crypto_hash_finish(verify->sha256_server, NULL, NULL);
crypto_hash_finish(verify->sha256_cert, NULL, NULL);
verify->sha256_client = NULL;
verify->sha256_server = NULL;
verify->sha256_cert = NULL;
#endif /* CONFIG_TLSV12 */
}
int tls_version_ok(u16 ver)
{
if (ver == TLS_VERSION_1)
return 1;
#ifdef CONFIG_TLSV11
if (ver == TLS_VERSION_1_1)
return 1;
#endif /* CONFIG_TLSV11 */
#ifdef CONFIG_TLSV12
if (ver == TLS_VERSION_1_2)
return 1;
#endif /* CONFIG_TLSV12 */
return 0;
}
const char * tls_version_str(u16 ver)
{
switch (ver) {
case TLS_VERSION_1:
return "1.0";
case TLS_VERSION_1_1:
return "1.1";
case TLS_VERSION_1_2:
return "1.2";
}
return "?";
}
int tls_prf(u16 ver, const u8 *secret, size_t secret_len, const char *label,
const u8 *seed, size_t seed_len, u8 *out, size_t outlen)
{
#ifdef CONFIG_TLSV12
if (ver >= TLS_VERSION_1_2) {
tls_prf_sha256(secret, secret_len, label, seed, seed_len,
out, outlen);
return 0;
}
#endif /* CONFIG_TLSV12 */
return tls_prf_sha1_md5(secret, secret_len, label, seed, seed_len, out,
outlen);
}
#ifdef CONFIG_TLSV12
int tlsv12_key_x_server_params_hash(u16 tls_version, u8 hash_alg,
const u8 *client_random,
const u8 *server_random,
const u8 *server_params,
size_t server_params_len, u8 *hash)
{
size_t hlen;
struct crypto_hash *ctx;
enum crypto_hash_alg alg;
switch (hash_alg) {
case TLS_HASH_ALG_SHA256:
alg = CRYPTO_HASH_ALG_SHA256;
hlen = SHA256_MAC_LEN;
break;
case TLS_HASH_ALG_SHA384:
alg = CRYPTO_HASH_ALG_SHA384;
hlen = 48;
break;
case TLS_HASH_ALG_SHA512:
alg = CRYPTO_HASH_ALG_SHA512;
hlen = 64;
break;
default:
return -1;
}
ctx = crypto_hash_init(alg, NULL, 0);
if (ctx == NULL)
return -1;
crypto_hash_update(ctx, client_random, TLS_RANDOM_LEN);
crypto_hash_update(ctx, server_random, TLS_RANDOM_LEN);
crypto_hash_update(ctx, server_params, server_params_len);
if (crypto_hash_finish(ctx, hash, &hlen) < 0)
return -1;
return hlen;
}
#endif /* CONFIG_TLSV12 */
int tls_key_x_server_params_hash(u16 tls_version, const u8 *client_random,
const u8 *server_random,
const u8 *server_params,
size_t server_params_len, u8 *hash)
{
u8 *hpos;
size_t hlen;
struct crypto_hash *ctx;
hpos = hash;
ctx = crypto_hash_init(CRYPTO_HASH_ALG_MD5, NULL, 0);
if (ctx == NULL)
return -1;
crypto_hash_update(ctx, client_random, TLS_RANDOM_LEN);
crypto_hash_update(ctx, server_random, TLS_RANDOM_LEN);
crypto_hash_update(ctx, server_params, server_params_len);
hlen = MD5_MAC_LEN;
if (crypto_hash_finish(ctx, hash, &hlen) < 0)
return -1;
hpos += hlen;
ctx = crypto_hash_init(CRYPTO_HASH_ALG_SHA1, NULL, 0);
if (ctx == NULL)
return -1;
crypto_hash_update(ctx, client_random, TLS_RANDOM_LEN);
crypto_hash_update(ctx, server_random, TLS_RANDOM_LEN);
crypto_hash_update(ctx, server_params, server_params_len);
hlen = hash + sizeof(hash) - hpos;
if (crypto_hash_finish(ctx, hpos, &hlen) < 0)
return -1;
hpos += hlen;
return hpos - hash;
}
int tls_verify_signature(u16 tls_version, struct crypto_public_key *pk,
const u8 *data, size_t data_len,
const u8 *pos, size_t len, u8 *alert)
{
u8 *buf;
const u8 *end = pos + len;
const u8 *decrypted;
u16 slen;
size_t buflen;
if (end - pos < 2) {
*alert = TLS_ALERT_DECODE_ERROR;
return -1;
}
slen = WPA_GET_BE16(pos);
pos += 2;
if (end - pos < slen) {
*alert = TLS_ALERT_DECODE_ERROR;
return -1;
}
if (end - pos > slen) {
wpa_hexdump(MSG_MSGDUMP, "Additional data after Signature",
pos + slen, end - pos - slen);
end = pos + slen;
}
wpa_hexdump(MSG_MSGDUMP, "TLSv1: Signature", pos, end - pos);
if (pk == NULL) {
wpa_printf(MSG_DEBUG, "TLSv1: No public key to verify signature");
*alert = TLS_ALERT_INTERNAL_ERROR;
return -1;
}
buflen = end - pos;
buf = os_malloc(end - pos);
if (buf == NULL) {
*alert = TLS_ALERT_INTERNAL_ERROR;
return -1;
}
if (crypto_public_key_decrypt_pkcs1(pk, pos, end - pos, buf, &buflen) <
0) {
wpa_printf(MSG_DEBUG, "TLSv1: Failed to decrypt signature");
os_free(buf);
*alert = TLS_ALERT_DECRYPT_ERROR;
return -1;
}
decrypted = buf;
wpa_hexdump_key(MSG_MSGDUMP, "TLSv1: Decrypted Signature",
decrypted, buflen);
#ifdef CONFIG_TLSV12
if (tls_version >= TLS_VERSION_1_2) {
/*
* RFC 3447, A.2.4 RSASSA-PKCS1-v1_5
*
* DigestInfo ::= SEQUENCE {
* digestAlgorithm DigestAlgorithm,
* digest OCTET STRING
* }
*
* SHA-256 OID: sha256WithRSAEncryption ::= {pkcs-1 11}
*
* DER encoded DigestInfo for SHA256 per RFC 3447:
* 30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 ||
* H
*/
if (buflen >= 19 + 32 &&
os_memcmp(buf, "\x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01"
"\x65\x03\x04\x02\x01\x05\x00\x04\x20", 19) == 0)
{
wpa_printf(MSG_DEBUG, "TLSv1.2: DigestAlgorithn = SHA-256");
decrypted = buf + 19;
buflen -= 19;
} else if (buflen >= 19 + 48 &&
os_memcmp(buf, "\x30\x41\x30\x0d\x06\x09\x60\x86\x48\x01"
"\x65\x03\x04\x02\x02\x05\x00\x04\x30", 19) == 0)
{
wpa_printf(MSG_DEBUG, "TLSv1.2: DigestAlgorithn = SHA-384");
decrypted = buf + 19;
buflen -= 19;
} else if (buflen >= 19 + 64 &&
os_memcmp(buf, "\x30\x51\x30\x0d\x06\x09\x60\x86\x48\x01"
"\x65\x03\x04\x02\x03\x05\x00\x04\x40", 19) == 0)
{
wpa_printf(MSG_DEBUG, "TLSv1.2: DigestAlgorithn = SHA-512");
decrypted = buf + 19;
buflen -= 19;
} else {
wpa_printf(MSG_DEBUG, "TLSv1.2: Unrecognized DigestInfo");
os_free(buf);
*alert = TLS_ALERT_DECRYPT_ERROR;
return -1;
}
}
#endif /* CONFIG_TLSV12 */
if (buflen != data_len ||
os_memcmp_const(decrypted, data, data_len) != 0) {
wpa_printf(MSG_DEBUG, "TLSv1: Invalid Signature in CertificateVerify - did not match calculated hash");
os_free(buf);
*alert = TLS_ALERT_DECRYPT_ERROR;
return -1;
}
os_free(buf);
return 0;
}