fragattacks/src/crypto/crypto.h
Jouni Malinen ab6d047405 Add function for building RSA public key from n and e parameters
This is similar to the existing functionality that parsed ASN.1-encoded
RSA public key by generating a similar public key instance from already
parsed n and e parameters.

Signed-off-by: Jouni Malinen <j@w1.fi>
2014-05-19 23:27:30 +03:00

780 lines
25 KiB
C

/*
* Wrapper functions for crypto libraries
* Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*
* This file defines the cryptographic functions that need to be implemented
* for wpa_supplicant and hostapd. When TLS is not used, internal
* implementation of MD5, SHA1, and AES is used and no external libraries are
* required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the
* crypto library used by the TLS implementation is expected to be used for
* non-TLS needs, too, in order to save space by not implementing these
* functions twice.
*
* Wrapper code for using each crypto library is in its own file (crypto*.c)
* and one of these files is build and linked in to provide the functions
* defined here.
*/
#ifndef CRYPTO_H
#define CRYPTO_H
/**
* md4_vector - MD4 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
/**
* md5_vector - MD5 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
/**
* sha1_vector - SHA-1 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac);
/**
* fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF
* @seed: Seed/key for the PRF
* @seed_len: Seed length in bytes
* @x: Buffer for PRF output
* @xlen: Output length in bytes
* Returns: 0 on success, -1 on failure
*
* This function implements random number generation specified in NIST FIPS
* Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to
* SHA-1, but has different message padding.
*/
int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x,
size_t xlen);
/**
* sha256_vector - SHA256 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 on failure
*/
int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
u8 *mac);
/**
* des_encrypt - Encrypt one block with DES
* @clear: 8 octets (in)
* @key: 7 octets (in) (no parity bits included)
* @cypher: 8 octets (out)
*/
void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher);
/**
* aes_encrypt_init - Initialize AES for encryption
* @key: Encryption key
* @len: Key length in bytes (usually 16, i.e., 128 bits)
* Returns: Pointer to context data or %NULL on failure
*/
void * aes_encrypt_init(const u8 *key, size_t len);
/**
* aes_encrypt - Encrypt one AES block
* @ctx: Context pointer from aes_encrypt_init()
* @plain: Plaintext data to be encrypted (16 bytes)
* @crypt: Buffer for the encrypted data (16 bytes)
*/
void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt);
/**
* aes_encrypt_deinit - Deinitialize AES encryption
* @ctx: Context pointer from aes_encrypt_init()
*/
void aes_encrypt_deinit(void *ctx);
/**
* aes_decrypt_init - Initialize AES for decryption
* @key: Decryption key
* @len: Key length in bytes (usually 16, i.e., 128 bits)
* Returns: Pointer to context data or %NULL on failure
*/
void * aes_decrypt_init(const u8 *key, size_t len);
/**
* aes_decrypt - Decrypt one AES block
* @ctx: Context pointer from aes_encrypt_init()
* @crypt: Encrypted data (16 bytes)
* @plain: Buffer for the decrypted data (16 bytes)
*/
void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain);
/**
* aes_decrypt_deinit - Deinitialize AES decryption
* @ctx: Context pointer from aes_encrypt_init()
*/
void aes_decrypt_deinit(void *ctx);
enum crypto_hash_alg {
CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1,
CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1,
CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256
};
struct crypto_hash;
/**
* crypto_hash_init - Initialize hash/HMAC function
* @alg: Hash algorithm
* @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed
* @key_len: Length of the key in bytes
* Returns: Pointer to hash context to use with other hash functions or %NULL
* on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
size_t key_len);
/**
* crypto_hash_update - Add data to hash calculation
* @ctx: Context pointer from crypto_hash_init()
* @data: Data buffer to add
* @len: Length of the buffer
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len);
/**
* crypto_hash_finish - Complete hash calculation
* @ctx: Context pointer from crypto_hash_init()
* @hash: Buffer for hash value or %NULL if caller is just freeing the hash
* context
* @len: Pointer to length of the buffer or %NULL if caller is just freeing the
* hash context; on return, this is set to the actual length of the hash value
* Returns: 0 on success, -1 if buffer is too small (len set to needed length),
* or -2 on other failures (including failed crypto_hash_update() operations)
*
* This function calculates the hash value and frees the context buffer that
* was used for hash calculation.
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len);
enum crypto_cipher_alg {
CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES,
CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4
};
struct crypto_cipher;
/**
* crypto_cipher_init - Initialize block/stream cipher function
* @alg: Cipher algorithm
* @iv: Initialization vector for block ciphers or %NULL for stream ciphers
* @key: Cipher key
* @key_len: Length of key in bytes
* Returns: Pointer to cipher context to use with other cipher functions or
* %NULL on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
const u8 *iv, const u8 *key,
size_t key_len);
/**
* crypto_cipher_encrypt - Cipher encrypt
* @ctx: Context pointer from crypto_cipher_init()
* @plain: Plaintext to cipher
* @crypt: Resulting ciphertext
* @len: Length of the plaintext
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx,
const u8 *plain, u8 *crypt, size_t len);
/**
* crypto_cipher_decrypt - Cipher decrypt
* @ctx: Context pointer from crypto_cipher_init()
* @crypt: Ciphertext to decrypt
* @plain: Resulting plaintext
* @len: Length of the cipher text
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx,
const u8 *crypt, u8 *plain, size_t len);
/**
* crypto_cipher_decrypt - Free cipher context
* @ctx: Context pointer from crypto_cipher_init()
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_cipher_deinit(struct crypto_cipher *ctx);
struct crypto_public_key;
struct crypto_private_key;
/**
* crypto_public_key_import - Import an RSA public key
* @key: Key buffer (DER encoded RSA public key)
* @len: Key buffer length in bytes
* Returns: Pointer to the public key or %NULL on failure
*
* This function can just return %NULL if the crypto library supports X.509
* parsing. In that case, crypto_public_key_from_cert() is used to import the
* public key from a certificate.
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len);
struct crypto_public_key *
crypto_public_key_import_parts(const u8 *n, size_t n_len,
const u8 *e, size_t e_len);
/**
* crypto_private_key_import - Import an RSA private key
* @key: Key buffer (DER encoded RSA private key)
* @len: Key buffer length in bytes
* @passwd: Key encryption password or %NULL if key is not encrypted
* Returns: Pointer to the private key or %NULL on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_private_key * crypto_private_key_import(const u8 *key,
size_t len,
const char *passwd);
/**
* crypto_public_key_from_cert - Import an RSA public key from a certificate
* @buf: DER encoded X.509 certificate
* @len: Certificate buffer length in bytes
* Returns: Pointer to public key or %NULL on failure
*
* This function can just return %NULL if the crypto library does not support
* X.509 parsing. In that case, internal code will be used to parse the
* certificate and public key is imported using crypto_public_key_import().
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
size_t len);
/**
* crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5)
* @key: Public key
* @in: Plaintext buffer
* @inlen: Length of plaintext buffer in bytes
* @out: Output buffer for encrypted data
* @outlen: Length of output buffer in bytes; set to used length on success
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_public_key_encrypt_pkcs1_v15(
struct crypto_public_key *key, const u8 *in, size_t inlen,
u8 *out, size_t *outlen);
/**
* crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5)
* @key: Private key
* @in: Encrypted buffer
* @inlen: Length of encrypted buffer in bytes
* @out: Output buffer for encrypted data
* @outlen: Length of output buffer in bytes; set to used length on success
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_private_key_decrypt_pkcs1_v15(
struct crypto_private_key *key, const u8 *in, size_t inlen,
u8 *out, size_t *outlen);
/**
* crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1)
* @key: Private key from crypto_private_key_import()
* @in: Plaintext buffer
* @inlen: Length of plaintext buffer in bytes
* @out: Output buffer for encrypted (signed) data
* @outlen: Length of output buffer in bytes; set to used length on success
* Returns: 0 on success, -1 on failure
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
const u8 *in, size_t inlen,
u8 *out, size_t *outlen);
/**
* crypto_public_key_free - Free public key
* @key: Public key
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_public_key_free(struct crypto_public_key *key);
/**
* crypto_private_key_free - Free private key
* @key: Private key from crypto_private_key_import()
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_private_key_free(struct crypto_private_key *key);
/**
* crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature
* @key: Public key
* @crypt: Encrypted signature data (using the private key)
* @crypt_len: Encrypted signature data length
* @plain: Buffer for plaintext (at least crypt_len bytes)
* @plain_len: Plaintext length (max buffer size on input, real len on output);
* Returns: 0 on success, -1 on failure
*/
int __must_check crypto_public_key_decrypt_pkcs1(
struct crypto_public_key *key, const u8 *crypt, size_t crypt_len,
u8 *plain, size_t *plain_len);
/**
* crypto_global_init - Initialize crypto wrapper
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_global_init(void);
/**
* crypto_global_deinit - Deinitialize crypto wrapper
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
void crypto_global_deinit(void);
/**
* crypto_mod_exp - Modular exponentiation of large integers
* @base: Base integer (big endian byte array)
* @base_len: Length of base integer in bytes
* @power: Power integer (big endian byte array)
* @power_len: Length of power integer in bytes
* @modulus: Modulus integer (big endian byte array)
* @modulus_len: Length of modulus integer in bytes
* @result: Buffer for the result
* @result_len: Result length (max buffer size on input, real len on output)
* Returns: 0 on success, -1 on failure
*
* This function calculates result = base ^ power mod modulus. modules_len is
* used as the maximum size of modulus buffer. It is set to the used size on
* success.
*
* This function is only used with internal TLSv1 implementation
* (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
* to implement this.
*/
int __must_check crypto_mod_exp(const u8 *base, size_t base_len,
const u8 *power, size_t power_len,
const u8 *modulus, size_t modulus_len,
u8 *result, size_t *result_len);
/**
* rc4_skip - XOR RC4 stream to given data with skip-stream-start
* @key: RC4 key
* @keylen: RC4 key length
* @skip: number of bytes to skip from the beginning of the RC4 stream
* @data: data to be XOR'ed with RC4 stream
* @data_len: buf length
* Returns: 0 on success, -1 on failure
*
* Generate RC4 pseudo random stream for the given key, skip beginning of the
* stream, and XOR the end result with the data buffer to perform RC4
* encryption/decryption.
*/
int rc4_skip(const u8 *key, size_t keylen, size_t skip,
u8 *data, size_t data_len);
/**
* crypto_get_random - Generate cryptographically strong pseudy-random bytes
* @buf: Buffer for data
* @len: Number of bytes to generate
* Returns: 0 on success, -1 on failure
*
* If the PRNG does not have enough entropy to ensure unpredictable byte
* sequence, this functions must return -1.
*/
int crypto_get_random(void *buf, size_t len);
/**
* struct crypto_bignum - bignum
*
* Internal data structure for bignum implementation. The contents is specific
* to the used crypto library.
*/
struct crypto_bignum;
/**
* crypto_bignum_init - Allocate memory for bignum
* Returns: Pointer to allocated bignum or %NULL on failure
*/
struct crypto_bignum * crypto_bignum_init(void);
/**
* crypto_bignum_init_set - Allocate memory for bignum and set the value
* @buf: Buffer with unsigned binary value
* @len: Length of buf in octets
* Returns: Pointer to allocated bignum or %NULL on failure
*/
struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len);
/**
* crypto_bignum_deinit - Free bignum
* @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set()
* @clear: Whether to clear the value from memory
*/
void crypto_bignum_deinit(struct crypto_bignum *n, int clear);
/**
* crypto_bignum_to_bin - Set binary buffer to unsigned bignum
* @a: Bignum
* @buf: Buffer for the binary number
* @len: Length of @buf in octets
* @padlen: Length in octets to pad the result to or 0 to indicate no padding
* Returns: Number of octets written on success, -1 on failure
*/
int crypto_bignum_to_bin(const struct crypto_bignum *a,
u8 *buf, size_t buflen, size_t padlen);
/**
* crypto_bignum_add - c = a + b
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a + b
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_add(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_mod - c = a % b
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a % b
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_mod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c)
* @a: Bignum; base
* @b: Bignum; exponent
* @c: Bignum; modulus
* @d: Bignum; used to store the result of a^b (mod c)
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_exptmod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
const struct crypto_bignum *c,
struct crypto_bignum *d);
/**
* crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b)
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_inverse(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_sub - c = a - b
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a - b
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_sub(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_div - c = a / b
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a / b
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_div(const struct crypto_bignum *a,
const struct crypto_bignum *b,
struct crypto_bignum *c);
/**
* crypto_bignum_mulmod - d = a * b (mod c)
* @a: Bignum
* @b: Bignum
* @c: Bignum
* @d: Bignum; used to store the result of (a * b) % c
* Returns: 0 on success, -1 on failure
*/
int crypto_bignum_mulmod(const struct crypto_bignum *a,
const struct crypto_bignum *b,
const struct crypto_bignum *c,
struct crypto_bignum *d);
/**
* crypto_bignum_cmp - Compare two bignums
* @a: Bignum
* @b: Bignum
* Returns: -1 if a < b, 0 if a == b, or 1 if a > b
*/
int crypto_bignum_cmp(const struct crypto_bignum *a,
const struct crypto_bignum *b);
/**
* crypto_bignum_bits - Get size of a bignum in bits
* @a: Bignum
* Returns: Number of bits in the bignum
*/
int crypto_bignum_bits(const struct crypto_bignum *a);
/**
* crypto_bignum_is_zero - Is the given bignum zero
* @a: Bignum
* Returns: 1 if @a is zero or 0 if not
*/
int crypto_bignum_is_zero(const struct crypto_bignum *a);
/**
* crypto_bignum_is_one - Is the given bignum one
* @a: Bignum
* Returns: 1 if @a is one or 0 if not
*/
int crypto_bignum_is_one(const struct crypto_bignum *a);
/**
* struct crypto_ec - Elliptic curve context
*
* Internal data structure for EC implementation. The contents is specific
* to the used crypto library.
*/
struct crypto_ec;
/**
* crypto_ec_init - Initialize elliptic curve context
* @group: Identifying number for the ECC group (IANA "Group Description"
* attribute registrty for RFC 2409)
* Returns: Pointer to EC context or %NULL on failure
*/
struct crypto_ec * crypto_ec_init(int group);
/**
* crypto_ec_deinit - Deinitialize elliptic curve context
* @e: EC context from crypto_ec_init()
*/
void crypto_ec_deinit(struct crypto_ec *e);
/**
* crypto_ec_prime_len - Get length of the prime in octets
* @e: EC context from crypto_ec_init()
* Returns: Length of the prime defining the group
*/
size_t crypto_ec_prime_len(struct crypto_ec *e);
/**
* crypto_ec_prime_len_bits - Get length of the prime in bits
* @e: EC context from crypto_ec_init()
* Returns: Length of the prime defining the group in bits
*/
size_t crypto_ec_prime_len_bits(struct crypto_ec *e);
/**
* crypto_ec_get_prime - Get prime defining an EC group
* @e: EC context from crypto_ec_init()
* Returns: Prime (bignum) defining the group
*/
const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e);
/**
* crypto_ec_get_order - Get order of an EC group
* @e: EC context from crypto_ec_init()
* Returns: Order (bignum) of the group
*/
const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e);
/**
* struct crypto_ec_point - Elliptic curve point
*
* Internal data structure for EC implementation to represent a point. The
* contents is specific to the used crypto library.
*/
struct crypto_ec_point;
/**
* crypto_ec_point_init - Initialize data for an EC point
* @e: EC context from crypto_ec_init()
* Returns: Pointer to EC point data or %NULL on failure
*/
struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e);
/**
* crypto_ec_point_deinit - Deinitialize EC point data
* @p: EC point data from crypto_ec_point_init()
* @clear: Whether to clear the EC point value from memory
*/
void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear);
/**
* crypto_ec_point_to_bin - Write EC point value as binary data
* @e: EC context from crypto_ec_init()
* @p: EC point data from crypto_ec_point_init()
* @x: Buffer for writing the binary data for x coordinate or %NULL if not used
* @y: Buffer for writing the binary data for y coordinate or %NULL if not used
* Returns: 0 on success, -1 on failure
*
* This function can be used to write an EC point as binary data in a format
* that has the x and y coordinates in big endian byte order fields padded to
* the length of the prime defining the group.
*/
int crypto_ec_point_to_bin(struct crypto_ec *e,
const struct crypto_ec_point *point, u8 *x, u8 *y);
/**
* crypto_ec_point_from_bin - Create EC point from binary data
* @e: EC context from crypto_ec_init()
* @val: Binary data to read the EC point from
* Returns: Pointer to EC point data or %NULL on failure
*
* This function readers x and y coordinates of the EC point from the provided
* buffer assuming the values are in big endian byte order with fields padded to
* the length of the prime defining the group.
*/
struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
const u8 *val);
/**
* crypto_bignum_add - c = a + b
* @e: EC context from crypto_ec_init()
* @a: Bignum
* @b: Bignum
* @c: Bignum; used to store the result of a + b
* Returns: 0 on success, -1 on failure
*/
int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
const struct crypto_ec_point *b,
struct crypto_ec_point *c);
/**
* crypto_bignum_mul - res = b * p
* @e: EC context from crypto_ec_init()
* @p: EC point
* @b: Bignum
* @res: EC point; used to store the result of b * p
* Returns: 0 on success, -1 on failure
*/
int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
const struct crypto_bignum *b,
struct crypto_ec_point *res);
/**
* crypto_ec_point_invert - Compute inverse of an EC point
* @e: EC context from crypto_ec_init()
* @p: EC point to invert (and result of the operation)
* Returns: 0 on success, -1 on failure
*/
int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p);
/**
* crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate
* @e: EC context from crypto_ec_init()
* @p: EC point to use for the returning the result
* @x: x coordinate
* @y_bit: y-bit (0 or 1) for selecting the y value to use
* Returns: 0 on success, -1 on failure
*/
int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
struct crypto_ec_point *p,
const struct crypto_bignum *x, int y_bit);
/**
* crypto_ec_point_is_at_infinity - Check whether EC point is neutral element
* @e: EC context from crypto_ec_init()
* @p: EC point
* Returns: 1 if the specified EC point is the neutral element of the group or
* 0 if not
*/
int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
const struct crypto_ec_point *p);
/**
* crypto_ec_point_is_on_curve - Check whether EC point is on curve
* @e: EC context from crypto_ec_init()
* @p: EC point
* Returns: 1 if the specified EC point is on the curve or 0 if not
*/
int crypto_ec_point_is_on_curve(struct crypto_ec *e,
const struct crypto_ec_point *p);
#endif /* CRYPTO_H */