mirror of
https://github.com/vanhoefm/fragattacks.git
synced 2025-01-18 02:44:03 -05:00
530 lines
12 KiB
C
530 lines
12 KiB
C
/*
|
|
* AES-based functions
|
|
*
|
|
* - AES Key Wrap Algorithm (128-bit KEK) (RFC3394)
|
|
* - One-Key CBC MAC (OMAC1, i.e., CMAC) hash with AES-128
|
|
* - AES-128 CTR mode encryption
|
|
* - AES-128 EAX mode encryption/decryption
|
|
* - AES-128 CBC
|
|
*
|
|
* Copyright (c) 2003-2007, Jouni Malinen <j@w1.fi>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of BSD
|
|
* license.
|
|
*
|
|
* See README and COPYING for more details.
|
|
*/
|
|
|
|
#include "includes.h"
|
|
|
|
#include "common.h"
|
|
#include "aes_wrap.h"
|
|
#include "crypto.h"
|
|
|
|
#ifndef CONFIG_NO_AES_WRAP
|
|
|
|
/**
|
|
* aes_wrap - Wrap keys with AES Key Wrap Algorithm (128-bit KEK) (RFC3394)
|
|
* @kek: 16-octet Key encryption key (KEK)
|
|
* @n: Length of the plaintext key in 64-bit units; e.g., 2 = 128-bit = 16
|
|
* bytes
|
|
* @plain: Plaintext key to be wrapped, n * 64 bits
|
|
* @cipher: Wrapped key, (n + 1) * 64 bits
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int aes_wrap(const u8 *kek, int n, const u8 *plain, u8 *cipher)
|
|
{
|
|
u8 *a, *r, b[16];
|
|
int i, j;
|
|
void *ctx;
|
|
|
|
a = cipher;
|
|
r = cipher + 8;
|
|
|
|
/* 1) Initialize variables. */
|
|
os_memset(a, 0xa6, 8);
|
|
os_memcpy(r, plain, 8 * n);
|
|
|
|
ctx = aes_encrypt_init(kek, 16);
|
|
if (ctx == NULL)
|
|
return -1;
|
|
|
|
/* 2) Calculate intermediate values.
|
|
* For j = 0 to 5
|
|
* For i=1 to n
|
|
* B = AES(K, A | R[i])
|
|
* A = MSB(64, B) ^ t where t = (n*j)+i
|
|
* R[i] = LSB(64, B)
|
|
*/
|
|
for (j = 0; j <= 5; j++) {
|
|
r = cipher + 8;
|
|
for (i = 1; i <= n; i++) {
|
|
os_memcpy(b, a, 8);
|
|
os_memcpy(b + 8, r, 8);
|
|
aes_encrypt(ctx, b, b);
|
|
os_memcpy(a, b, 8);
|
|
a[7] ^= n * j + i;
|
|
os_memcpy(r, b + 8, 8);
|
|
r += 8;
|
|
}
|
|
}
|
|
aes_encrypt_deinit(ctx);
|
|
|
|
/* 3) Output the results.
|
|
*
|
|
* These are already in @cipher due to the location of temporary
|
|
* variables.
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_NO_AES_WRAP */
|
|
|
|
|
|
/**
|
|
* aes_unwrap - Unwrap key with AES Key Wrap Algorithm (128-bit KEK) (RFC3394)
|
|
* @kek: Key encryption key (KEK)
|
|
* @n: Length of the plaintext key in 64-bit units; e.g., 2 = 128-bit = 16
|
|
* bytes
|
|
* @cipher: Wrapped key to be unwrapped, (n + 1) * 64 bits
|
|
* @plain: Plaintext key, n * 64 bits
|
|
* Returns: 0 on success, -1 on failure (e.g., integrity verification failed)
|
|
*/
|
|
int aes_unwrap(const u8 *kek, int n, const u8 *cipher, u8 *plain)
|
|
{
|
|
u8 a[8], *r, b[16];
|
|
int i, j;
|
|
void *ctx;
|
|
|
|
/* 1) Initialize variables. */
|
|
os_memcpy(a, cipher, 8);
|
|
r = plain;
|
|
os_memcpy(r, cipher + 8, 8 * n);
|
|
|
|
ctx = aes_decrypt_init(kek, 16);
|
|
if (ctx == NULL)
|
|
return -1;
|
|
|
|
/* 2) Compute intermediate values.
|
|
* For j = 5 to 0
|
|
* For i = n to 1
|
|
* B = AES-1(K, (A ^ t) | R[i]) where t = n*j+i
|
|
* A = MSB(64, B)
|
|
* R[i] = LSB(64, B)
|
|
*/
|
|
for (j = 5; j >= 0; j--) {
|
|
r = plain + (n - 1) * 8;
|
|
for (i = n; i >= 1; i--) {
|
|
os_memcpy(b, a, 8);
|
|
b[7] ^= n * j + i;
|
|
|
|
os_memcpy(b + 8, r, 8);
|
|
aes_decrypt(ctx, b, b);
|
|
os_memcpy(a, b, 8);
|
|
os_memcpy(r, b + 8, 8);
|
|
r -= 8;
|
|
}
|
|
}
|
|
aes_decrypt_deinit(ctx);
|
|
|
|
/* 3) Output results.
|
|
*
|
|
* These are already in @plain due to the location of temporary
|
|
* variables. Just verify that the IV matches with the expected value.
|
|
*/
|
|
for (i = 0; i < 8; i++) {
|
|
if (a[i] != 0xa6)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#define BLOCK_SIZE 16
|
|
|
|
#ifndef CONFIG_NO_AES_OMAC1
|
|
|
|
static void gf_mulx(u8 *pad)
|
|
{
|
|
int i, carry;
|
|
|
|
carry = pad[0] & 0x80;
|
|
for (i = 0; i < BLOCK_SIZE - 1; i++)
|
|
pad[i] = (pad[i] << 1) | (pad[i + 1] >> 7);
|
|
pad[BLOCK_SIZE - 1] <<= 1;
|
|
if (carry)
|
|
pad[BLOCK_SIZE - 1] ^= 0x87;
|
|
}
|
|
|
|
|
|
/**
|
|
* omac1_aes_128_vector - One-Key CBC MAC (OMAC1) hash with AES-128
|
|
* @key: 128-bit key for the hash operation
|
|
* @num_elem: Number of elements in the data vector
|
|
* @addr: Pointers to the data areas
|
|
* @len: Lengths of the data blocks
|
|
* @mac: Buffer for MAC (128 bits, i.e., 16 bytes)
|
|
* Returns: 0 on success, -1 on failure
|
|
*
|
|
* This is a mode for using block cipher (AES in this case) for authentication.
|
|
* OMAC1 was standardized with the name CMAC by NIST in a Special Publication
|
|
* (SP) 800-38B.
|
|
*/
|
|
int omac1_aes_128_vector(const u8 *key, size_t num_elem,
|
|
const u8 *addr[], const size_t *len, u8 *mac)
|
|
{
|
|
void *ctx;
|
|
u8 cbc[BLOCK_SIZE], pad[BLOCK_SIZE];
|
|
const u8 *pos, *end;
|
|
size_t i, e, left, total_len;
|
|
|
|
ctx = aes_encrypt_init(key, 16);
|
|
if (ctx == NULL)
|
|
return -1;
|
|
os_memset(cbc, 0, BLOCK_SIZE);
|
|
|
|
total_len = 0;
|
|
for (e = 0; e < num_elem; e++)
|
|
total_len += len[e];
|
|
left = total_len;
|
|
|
|
e = 0;
|
|
pos = addr[0];
|
|
end = pos + len[0];
|
|
|
|
while (left >= BLOCK_SIZE) {
|
|
for (i = 0; i < BLOCK_SIZE; i++) {
|
|
cbc[i] ^= *pos++;
|
|
if (pos >= end) {
|
|
e++;
|
|
pos = addr[e];
|
|
end = pos + len[e];
|
|
}
|
|
}
|
|
if (left > BLOCK_SIZE)
|
|
aes_encrypt(ctx, cbc, cbc);
|
|
left -= BLOCK_SIZE;
|
|
}
|
|
|
|
os_memset(pad, 0, BLOCK_SIZE);
|
|
aes_encrypt(ctx, pad, pad);
|
|
gf_mulx(pad);
|
|
|
|
if (left || total_len == 0) {
|
|
for (i = 0; i < left; i++) {
|
|
cbc[i] ^= *pos++;
|
|
if (pos >= end) {
|
|
e++;
|
|
pos = addr[e];
|
|
end = pos + len[e];
|
|
}
|
|
}
|
|
cbc[left] ^= 0x80;
|
|
gf_mulx(pad);
|
|
}
|
|
|
|
for (i = 0; i < BLOCK_SIZE; i++)
|
|
pad[i] ^= cbc[i];
|
|
aes_encrypt(ctx, pad, mac);
|
|
aes_encrypt_deinit(ctx);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* omac1_aes_128 - One-Key CBC MAC (OMAC1) hash with AES-128 (aka AES-CMAC)
|
|
* @key: 128-bit key for the hash operation
|
|
* @data: Data buffer for which a MAC is determined
|
|
* @data_len: Length of data buffer in bytes
|
|
* @mac: Buffer for MAC (128 bits, i.e., 16 bytes)
|
|
* Returns: 0 on success, -1 on failure
|
|
*
|
|
* This is a mode for using block cipher (AES in this case) for authentication.
|
|
* OMAC1 was standardized with the name CMAC by NIST in a Special Publication
|
|
* (SP) 800-38B.
|
|
*/
|
|
int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
|
|
{
|
|
return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
|
|
}
|
|
|
|
#endif /* CONFIG_NO_AES_OMAC1 */
|
|
|
|
|
|
#ifndef CONFIG_NO_AES_ENCRYPT_BLOCK
|
|
/**
|
|
* aes_128_encrypt_block - Perform one AES 128-bit block operation
|
|
* @key: Key for AES
|
|
* @in: Input data (16 bytes)
|
|
* @out: Output of the AES block operation (16 bytes)
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int aes_128_encrypt_block(const u8 *key, const u8 *in, u8 *out)
|
|
{
|
|
void *ctx;
|
|
ctx = aes_encrypt_init(key, 16);
|
|
if (ctx == NULL)
|
|
return -1;
|
|
aes_encrypt(ctx, in, out);
|
|
aes_encrypt_deinit(ctx);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NO_AES_ENCRYPT_BLOCK */
|
|
|
|
|
|
#ifndef CONFIG_NO_AES_CTR
|
|
|
|
/**
|
|
* aes_128_ctr_encrypt - AES-128 CTR mode encryption
|
|
* @key: Key for encryption (16 bytes)
|
|
* @nonce: Nonce for counter mode (16 bytes)
|
|
* @data: Data to encrypt in-place
|
|
* @data_len: Length of data in bytes
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int aes_128_ctr_encrypt(const u8 *key, const u8 *nonce,
|
|
u8 *data, size_t data_len)
|
|
{
|
|
void *ctx;
|
|
size_t j, len, left = data_len;
|
|
int i;
|
|
u8 *pos = data;
|
|
u8 counter[BLOCK_SIZE], buf[BLOCK_SIZE];
|
|
|
|
ctx = aes_encrypt_init(key, 16);
|
|
if (ctx == NULL)
|
|
return -1;
|
|
os_memcpy(counter, nonce, BLOCK_SIZE);
|
|
|
|
while (left > 0) {
|
|
aes_encrypt(ctx, counter, buf);
|
|
|
|
len = (left < BLOCK_SIZE) ? left : BLOCK_SIZE;
|
|
for (j = 0; j < len; j++)
|
|
pos[j] ^= buf[j];
|
|
pos += len;
|
|
left -= len;
|
|
|
|
for (i = BLOCK_SIZE - 1; i >= 0; i--) {
|
|
counter[i]++;
|
|
if (counter[i])
|
|
break;
|
|
}
|
|
}
|
|
aes_encrypt_deinit(ctx);
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_NO_AES_CTR */
|
|
|
|
|
|
#ifndef CONFIG_NO_AES_EAX
|
|
|
|
/**
|
|
* aes_128_eax_encrypt - AES-128 EAX mode encryption
|
|
* @key: Key for encryption (16 bytes)
|
|
* @nonce: Nonce for counter mode
|
|
* @nonce_len: Nonce length in bytes
|
|
* @hdr: Header data to be authenticity protected
|
|
* @hdr_len: Length of the header data bytes
|
|
* @data: Data to encrypt in-place
|
|
* @data_len: Length of data in bytes
|
|
* @tag: 16-byte tag value
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int aes_128_eax_encrypt(const u8 *key, const u8 *nonce, size_t nonce_len,
|
|
const u8 *hdr, size_t hdr_len,
|
|
u8 *data, size_t data_len, u8 *tag)
|
|
{
|
|
u8 *buf;
|
|
size_t buf_len;
|
|
u8 nonce_mac[BLOCK_SIZE], hdr_mac[BLOCK_SIZE], data_mac[BLOCK_SIZE];
|
|
int i, ret = -1;
|
|
|
|
if (nonce_len > data_len)
|
|
buf_len = nonce_len;
|
|
else
|
|
buf_len = data_len;
|
|
if (hdr_len > buf_len)
|
|
buf_len = hdr_len;
|
|
buf_len += 16;
|
|
|
|
buf = os_malloc(buf_len);
|
|
if (buf == NULL)
|
|
return -1;
|
|
|
|
os_memset(buf, 0, 15);
|
|
|
|
buf[15] = 0;
|
|
os_memcpy(buf + 16, nonce, nonce_len);
|
|
if (omac1_aes_128(key, buf, 16 + nonce_len, nonce_mac))
|
|
goto fail;
|
|
|
|
buf[15] = 1;
|
|
os_memcpy(buf + 16, hdr, hdr_len);
|
|
if (omac1_aes_128(key, buf, 16 + hdr_len, hdr_mac))
|
|
goto fail;
|
|
|
|
if (aes_128_ctr_encrypt(key, nonce_mac, data, data_len))
|
|
goto fail;
|
|
buf[15] = 2;
|
|
os_memcpy(buf + 16, data, data_len);
|
|
if (omac1_aes_128(key, buf, 16 + data_len, data_mac))
|
|
goto fail;
|
|
|
|
for (i = 0; i < BLOCK_SIZE; i++)
|
|
tag[i] = nonce_mac[i] ^ data_mac[i] ^ hdr_mac[i];
|
|
|
|
ret = 0;
|
|
fail:
|
|
os_free(buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* aes_128_eax_decrypt - AES-128 EAX mode decryption
|
|
* @key: Key for decryption (16 bytes)
|
|
* @nonce: Nonce for counter mode
|
|
* @nonce_len: Nonce length in bytes
|
|
* @hdr: Header data to be authenticity protected
|
|
* @hdr_len: Length of the header data bytes
|
|
* @data: Data to encrypt in-place
|
|
* @data_len: Length of data in bytes
|
|
* @tag: 16-byte tag value
|
|
* Returns: 0 on success, -1 on failure, -2 if tag does not match
|
|
*/
|
|
int aes_128_eax_decrypt(const u8 *key, const u8 *nonce, size_t nonce_len,
|
|
const u8 *hdr, size_t hdr_len,
|
|
u8 *data, size_t data_len, const u8 *tag)
|
|
{
|
|
u8 *buf;
|
|
size_t buf_len;
|
|
u8 nonce_mac[BLOCK_SIZE], hdr_mac[BLOCK_SIZE], data_mac[BLOCK_SIZE];
|
|
int i;
|
|
|
|
if (nonce_len > data_len)
|
|
buf_len = nonce_len;
|
|
else
|
|
buf_len = data_len;
|
|
if (hdr_len > buf_len)
|
|
buf_len = hdr_len;
|
|
buf_len += 16;
|
|
|
|
buf = os_malloc(buf_len);
|
|
if (buf == NULL)
|
|
return -1;
|
|
|
|
os_memset(buf, 0, 15);
|
|
|
|
buf[15] = 0;
|
|
os_memcpy(buf + 16, nonce, nonce_len);
|
|
if (omac1_aes_128(key, buf, 16 + nonce_len, nonce_mac)) {
|
|
os_free(buf);
|
|
return -1;
|
|
}
|
|
|
|
buf[15] = 1;
|
|
os_memcpy(buf + 16, hdr, hdr_len);
|
|
if (omac1_aes_128(key, buf, 16 + hdr_len, hdr_mac)) {
|
|
os_free(buf);
|
|
return -1;
|
|
}
|
|
|
|
buf[15] = 2;
|
|
os_memcpy(buf + 16, data, data_len);
|
|
if (omac1_aes_128(key, buf, 16 + data_len, data_mac)) {
|
|
os_free(buf);
|
|
return -1;
|
|
}
|
|
|
|
os_free(buf);
|
|
|
|
for (i = 0; i < BLOCK_SIZE; i++) {
|
|
if (tag[i] != (nonce_mac[i] ^ data_mac[i] ^ hdr_mac[i]))
|
|
return -2;
|
|
}
|
|
|
|
return aes_128_ctr_encrypt(key, nonce_mac, data, data_len);
|
|
}
|
|
|
|
#endif /* CONFIG_NO_AES_EAX */
|
|
|
|
|
|
#ifndef CONFIG_NO_AES_CBC
|
|
|
|
/**
|
|
* aes_128_cbc_encrypt - AES-128 CBC encryption
|
|
* @key: Encryption key
|
|
* @iv: Encryption IV for CBC mode (16 bytes)
|
|
* @data: Data to encrypt in-place
|
|
* @data_len: Length of data in bytes (must be divisible by 16)
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
|
|
{
|
|
void *ctx;
|
|
u8 cbc[BLOCK_SIZE];
|
|
u8 *pos = data;
|
|
int i, j, blocks;
|
|
|
|
ctx = aes_encrypt_init(key, 16);
|
|
if (ctx == NULL)
|
|
return -1;
|
|
os_memcpy(cbc, iv, BLOCK_SIZE);
|
|
|
|
blocks = data_len / BLOCK_SIZE;
|
|
for (i = 0; i < blocks; i++) {
|
|
for (j = 0; j < BLOCK_SIZE; j++)
|
|
cbc[j] ^= pos[j];
|
|
aes_encrypt(ctx, cbc, cbc);
|
|
os_memcpy(pos, cbc, BLOCK_SIZE);
|
|
pos += BLOCK_SIZE;
|
|
}
|
|
aes_encrypt_deinit(ctx);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* aes_128_cbc_decrypt - AES-128 CBC decryption
|
|
* @key: Decryption key
|
|
* @iv: Decryption IV for CBC mode (16 bytes)
|
|
* @data: Data to decrypt in-place
|
|
* @data_len: Length of data in bytes (must be divisible by 16)
|
|
* Returns: 0 on success, -1 on failure
|
|
*/
|
|
int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
|
|
{
|
|
void *ctx;
|
|
u8 cbc[BLOCK_SIZE], tmp[BLOCK_SIZE];
|
|
u8 *pos = data;
|
|
int i, j, blocks;
|
|
|
|
ctx = aes_decrypt_init(key, 16);
|
|
if (ctx == NULL)
|
|
return -1;
|
|
os_memcpy(cbc, iv, BLOCK_SIZE);
|
|
|
|
blocks = data_len / BLOCK_SIZE;
|
|
for (i = 0; i < blocks; i++) {
|
|
os_memcpy(tmp, pos, BLOCK_SIZE);
|
|
aes_decrypt(ctx, pos, pos);
|
|
for (j = 0; j < BLOCK_SIZE; j++)
|
|
pos[j] ^= cbc[j];
|
|
os_memcpy(cbc, tmp, BLOCK_SIZE);
|
|
pos += BLOCK_SIZE;
|
|
}
|
|
aes_decrypt_deinit(ctx);
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_NO_AES_CBC */
|