/* * IKEv2 common routines for initiator and responder * Copyright (c) 2007, Jouni Malinen * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "includes.h" #include "common.h" #include "crypto/crypto.h" #include "crypto/md5.h" #include "crypto/sha1.h" #include "crypto/random.h" #include "ikev2_common.h" static struct ikev2_integ_alg ikev2_integ_algs[] = { { AUTH_HMAC_SHA1_96, 20, 12 }, { AUTH_HMAC_MD5_96, 16, 12 } }; #define NUM_INTEG_ALGS ARRAY_SIZE(ikev2_integ_algs) static struct ikev2_prf_alg ikev2_prf_algs[] = { { PRF_HMAC_SHA1, 20, 20 }, { PRF_HMAC_MD5, 16, 16 } }; #define NUM_PRF_ALGS ARRAY_SIZE(ikev2_prf_algs) static struct ikev2_encr_alg ikev2_encr_algs[] = { { ENCR_AES_CBC, 16, 16 }, /* only 128-bit keys supported for now */ { ENCR_3DES, 24, 8 } }; #define NUM_ENCR_ALGS ARRAY_SIZE(ikev2_encr_algs) const struct ikev2_integ_alg * ikev2_get_integ(int id) { size_t i; for (i = 0; i < NUM_INTEG_ALGS; i++) { if (ikev2_integ_algs[i].id == id) return &ikev2_integ_algs[i]; } return NULL; } int ikev2_integ_hash(int alg, const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *hash) { u8 tmphash[IKEV2_MAX_HASH_LEN]; switch (alg) { case AUTH_HMAC_SHA1_96: if (key_len != 20) return -1; hmac_sha1(key, key_len, data, data_len, tmphash); os_memcpy(hash, tmphash, 12); break; case AUTH_HMAC_MD5_96: if (key_len != 16) return -1; hmac_md5(key, key_len, data, data_len, tmphash); os_memcpy(hash, tmphash, 12); break; default: return -1; } return 0; } const struct ikev2_prf_alg * ikev2_get_prf(int id) { size_t i; for (i = 0; i < NUM_PRF_ALGS; i++) { if (ikev2_prf_algs[i].id == id) return &ikev2_prf_algs[i]; } return NULL; } int ikev2_prf_hash(int alg, const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *hash) { switch (alg) { case PRF_HMAC_SHA1: hmac_sha1_vector(key, key_len, num_elem, addr, len, hash); break; case PRF_HMAC_MD5: hmac_md5_vector(key, key_len, num_elem, addr, len, hash); break; default: return -1; } return 0; } int ikev2_prf_plus(int alg, const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *out, size_t out_len) { u8 hash[IKEV2_MAX_HASH_LEN]; size_t hash_len; u8 iter, *pos, *end; const u8 *addr[3]; size_t len[3]; const struct ikev2_prf_alg *prf; int res; prf = ikev2_get_prf(alg); if (prf == NULL) return -1; hash_len = prf->hash_len; addr[0] = hash; len[0] = hash_len; addr[1] = data; len[1] = data_len; addr[2] = &iter; len[2] = 1; pos = out; end = out + out_len; iter = 1; while (pos < end) { size_t clen; if (iter == 1) res = ikev2_prf_hash(alg, key, key_len, 2, &addr[1], &len[1], hash); else res = ikev2_prf_hash(alg, key, key_len, 3, addr, len, hash); if (res < 0) return -1; clen = hash_len; if ((int) clen > end - pos) clen = end - pos; os_memcpy(pos, hash, clen); pos += clen; iter++; } return 0; } const struct ikev2_encr_alg * ikev2_get_encr(int id) { size_t i; for (i = 0; i < NUM_ENCR_ALGS; i++) { if (ikev2_encr_algs[i].id == id) return &ikev2_encr_algs[i]; } return NULL; } int ikev2_encr_encrypt(int alg, const u8 *key, size_t key_len, const u8 *iv, const u8 *plain, u8 *crypt, size_t len) { struct crypto_cipher *cipher; int encr_alg; switch (alg) { case ENCR_3DES: encr_alg = CRYPTO_CIPHER_ALG_3DES; break; case ENCR_AES_CBC: encr_alg = CRYPTO_CIPHER_ALG_AES; break; default: wpa_printf(MSG_DEBUG, "IKEV2: Unsupported encr alg %d", alg); return -1; } cipher = crypto_cipher_init(encr_alg, iv, key, key_len); if (cipher == NULL) { wpa_printf(MSG_INFO, "IKEV2: Failed to initialize cipher"); return -1; } if (crypto_cipher_encrypt(cipher, plain, crypt, len) < 0) { wpa_printf(MSG_INFO, "IKEV2: Encryption failed"); crypto_cipher_deinit(cipher); return -1; } crypto_cipher_deinit(cipher); return 0; } int ikev2_encr_decrypt(int alg, const u8 *key, size_t key_len, const u8 *iv, const u8 *crypt, u8 *plain, size_t len) { struct crypto_cipher *cipher; int encr_alg; switch (alg) { case ENCR_3DES: encr_alg = CRYPTO_CIPHER_ALG_3DES; break; case ENCR_AES_CBC: encr_alg = CRYPTO_CIPHER_ALG_AES; break; default: wpa_printf(MSG_DEBUG, "IKEV2: Unsupported encr alg %d", alg); return -1; } cipher = crypto_cipher_init(encr_alg, iv, key, key_len); if (cipher == NULL) { wpa_printf(MSG_INFO, "IKEV2: Failed to initialize cipher"); return -1; } if (crypto_cipher_decrypt(cipher, crypt, plain, len) < 0) { wpa_printf(MSG_INFO, "IKEV2: Decryption failed"); crypto_cipher_deinit(cipher); return -1; } crypto_cipher_deinit(cipher); return 0; } int ikev2_parse_payloads(struct ikev2_payloads *payloads, u8 next_payload, const u8 *pos, const u8 *end) { const struct ikev2_payload_hdr *phdr; os_memset(payloads, 0, sizeof(*payloads)); while (next_payload != IKEV2_PAYLOAD_NO_NEXT_PAYLOAD) { int plen, pdatalen; const u8 *pdata; wpa_printf(MSG_DEBUG, "IKEV2: Processing payload %u", next_payload); if (end - pos < (int) sizeof(*phdr)) { wpa_printf(MSG_INFO, "IKEV2: Too short message for " "payload header (left=%ld)", (long) (end - pos)); } phdr = (const struct ikev2_payload_hdr *) pos; plen = WPA_GET_BE16(phdr->payload_length); if (plen < (int) sizeof(*phdr) || pos + plen > end) { wpa_printf(MSG_INFO, "IKEV2: Invalid payload header " "length %d", plen); return -1; } wpa_printf(MSG_DEBUG, "IKEV2: Next Payload: %u Flags: 0x%x" " Payload Length: %d", phdr->next_payload, phdr->flags, plen); pdata = (const u8 *) (phdr + 1); pdatalen = plen - sizeof(*phdr); switch (next_payload) { case IKEV2_PAYLOAD_SA: wpa_printf(MSG_DEBUG, "IKEV2: Payload: Security " "Association"); payloads->sa = pdata; payloads->sa_len = pdatalen; break; case IKEV2_PAYLOAD_KEY_EXCHANGE: wpa_printf(MSG_DEBUG, "IKEV2: Payload: Key " "Exchange"); payloads->ke = pdata; payloads->ke_len = pdatalen; break; case IKEV2_PAYLOAD_IDi: wpa_printf(MSG_DEBUG, "IKEV2: Payload: IDi"); payloads->idi = pdata; payloads->idi_len = pdatalen; break; case IKEV2_PAYLOAD_IDr: wpa_printf(MSG_DEBUG, "IKEV2: Payload: IDr"); payloads->idr = pdata; payloads->idr_len = pdatalen; break; case IKEV2_PAYLOAD_CERTIFICATE: wpa_printf(MSG_DEBUG, "IKEV2: Payload: Certificate"); payloads->cert = pdata; payloads->cert_len = pdatalen; break; case IKEV2_PAYLOAD_AUTHENTICATION: wpa_printf(MSG_DEBUG, "IKEV2: Payload: " "Authentication"); payloads->auth = pdata; payloads->auth_len = pdatalen; break; case IKEV2_PAYLOAD_NONCE: wpa_printf(MSG_DEBUG, "IKEV2: Payload: Nonce"); payloads->nonce = pdata; payloads->nonce_len = pdatalen; break; case IKEV2_PAYLOAD_ENCRYPTED: wpa_printf(MSG_DEBUG, "IKEV2: Payload: Encrypted"); payloads->encrypted = pdata; payloads->encrypted_len = pdatalen; break; case IKEV2_PAYLOAD_NOTIFICATION: wpa_printf(MSG_DEBUG, "IKEV2: Payload: " "Notification"); payloads->notification = pdata; payloads->notification_len = pdatalen; break; default: if (phdr->flags & IKEV2_PAYLOAD_FLAGS_CRITICAL) { wpa_printf(MSG_INFO, "IKEV2: Unsupported " "critical payload %u - reject the " "entire message", next_payload); return -1; } else { wpa_printf(MSG_DEBUG, "IKEV2: Skipped " "unsupported payload %u", next_payload); } } if (next_payload == IKEV2_PAYLOAD_ENCRYPTED && pos + plen == end) { /* * Next Payload in the case of Encrypted Payload is * actually the payload type for the first embedded * payload. */ payloads->encr_next_payload = phdr->next_payload; next_payload = IKEV2_PAYLOAD_NO_NEXT_PAYLOAD; } else next_payload = phdr->next_payload; pos += plen; } if (pos != end) { wpa_printf(MSG_INFO, "IKEV2: Unexpected extra data after " "payloads"); return -1; } return 0; } int ikev2_derive_auth_data(int prf_alg, const struct wpabuf *sign_msg, const u8 *ID, size_t ID_len, u8 ID_type, struct ikev2_keys *keys, int initiator, const u8 *shared_secret, size_t shared_secret_len, const u8 *nonce, size_t nonce_len, const u8 *key_pad, size_t key_pad_len, u8 *auth_data) { size_t sign_len, buf_len; u8 *sign_data, *pos, *buf, hash[IKEV2_MAX_HASH_LEN]; const struct ikev2_prf_alg *prf; const u8 *SK_p = initiator ? keys->SK_pi : keys->SK_pr; prf = ikev2_get_prf(prf_alg); if (sign_msg == NULL || ID == NULL || SK_p == NULL || shared_secret == NULL || nonce == NULL || prf == NULL) return -1; /* prf(SK_pi/r,IDi/r') */ buf_len = 4 + ID_len; buf = os_zalloc(buf_len); if (buf == NULL) return -1; buf[0] = ID_type; os_memcpy(buf + 4, ID, ID_len); if (ikev2_prf_hash(prf->id, SK_p, keys->SK_prf_len, 1, (const u8 **) &buf, &buf_len, hash) < 0) { os_free(buf); return -1; } os_free(buf); /* sign_data = msg | Nr/i | prf(SK_pi/r,IDi/r') */ sign_len = wpabuf_len(sign_msg) + nonce_len + prf->hash_len; sign_data = os_malloc(sign_len); if (sign_data == NULL) return -1; pos = sign_data; os_memcpy(pos, wpabuf_head(sign_msg), wpabuf_len(sign_msg)); pos += wpabuf_len(sign_msg); os_memcpy(pos, nonce, nonce_len); pos += nonce_len; os_memcpy(pos, hash, prf->hash_len); /* AUTH = prf(prf(Shared Secret, key pad, sign_data) */ if (ikev2_prf_hash(prf->id, shared_secret, shared_secret_len, 1, &key_pad, &key_pad_len, hash) < 0 || ikev2_prf_hash(prf->id, hash, prf->hash_len, 1, (const u8 **) &sign_data, &sign_len, auth_data) < 0) { os_free(sign_data); return -1; } os_free(sign_data); return 0; } u8 * ikev2_decrypt_payload(int encr_id, int integ_id, struct ikev2_keys *keys, int initiator, const struct ikev2_hdr *hdr, const u8 *encrypted, size_t encrypted_len, size_t *res_len) { size_t iv_len; const u8 *pos, *end, *iv, *integ; u8 hash[IKEV2_MAX_HASH_LEN], *decrypted; size_t decrypted_len, pad_len; const struct ikev2_integ_alg *integ_alg; const struct ikev2_encr_alg *encr_alg; const u8 *SK_e = initiator ? keys->SK_ei : keys->SK_er; const u8 *SK_a = initiator ? keys->SK_ai : keys->SK_ar; if (encrypted == NULL) { wpa_printf(MSG_INFO, "IKEV2: No Encrypted payload in SA_AUTH"); return NULL; } encr_alg = ikev2_get_encr(encr_id); if (encr_alg == NULL) { wpa_printf(MSG_INFO, "IKEV2: Unsupported encryption type"); return NULL; } iv_len = encr_alg->block_size; integ_alg = ikev2_get_integ(integ_id); if (integ_alg == NULL) { wpa_printf(MSG_INFO, "IKEV2: Unsupported intergrity type"); return NULL; } if (encrypted_len < iv_len + 1 + integ_alg->hash_len) { wpa_printf(MSG_INFO, "IKEV2: No room for IV or Integrity " "Checksum"); return NULL; } iv = encrypted; pos = iv + iv_len; end = encrypted + encrypted_len; integ = end - integ_alg->hash_len; if (SK_a == NULL) { wpa_printf(MSG_INFO, "IKEV2: No SK_a available"); return NULL; } if (ikev2_integ_hash(integ_id, SK_a, keys->SK_integ_len, (const u8 *) hdr, integ - (const u8 *) hdr, hash) < 0) { wpa_printf(MSG_INFO, "IKEV2: Failed to calculate integrity " "hash"); return NULL; } if (os_memcmp(integ, hash, integ_alg->hash_len) != 0) { wpa_printf(MSG_INFO, "IKEV2: Incorrect Integrity Checksum " "Data"); return NULL; } if (SK_e == NULL) { wpa_printf(MSG_INFO, "IKEV2: No SK_e available"); return NULL; } decrypted_len = integ - pos; decrypted = os_malloc(decrypted_len); if (decrypted == NULL) return NULL; if (ikev2_encr_decrypt(encr_alg->id, SK_e, keys->SK_encr_len, iv, pos, decrypted, decrypted_len) < 0) { os_free(decrypted); return NULL; } pad_len = decrypted[decrypted_len - 1]; if (decrypted_len < pad_len + 1) { wpa_printf(MSG_INFO, "IKEV2: Invalid padding in encrypted " "payload"); os_free(decrypted); return NULL; } decrypted_len -= pad_len + 1; *res_len = decrypted_len; return decrypted; } void ikev2_update_hdr(struct wpabuf *msg) { struct ikev2_hdr *hdr; /* Update lenth field in HDR */ hdr = wpabuf_mhead(msg); WPA_PUT_BE32(hdr->length, wpabuf_len(msg)); } int ikev2_build_encrypted(int encr_id, int integ_id, struct ikev2_keys *keys, int initiator, struct wpabuf *msg, struct wpabuf *plain, u8 next_payload) { struct ikev2_payload_hdr *phdr; size_t plen; size_t iv_len, pad_len; u8 *icv, *iv; const struct ikev2_integ_alg *integ_alg; const struct ikev2_encr_alg *encr_alg; const u8 *SK_e = initiator ? keys->SK_ei : keys->SK_er; const u8 *SK_a = initiator ? keys->SK_ai : keys->SK_ar; wpa_printf(MSG_DEBUG, "IKEV2: Adding Encrypted payload"); /* Encr - RFC 4306, Sect. 3.14 */ encr_alg = ikev2_get_encr(encr_id); if (encr_alg == NULL) { wpa_printf(MSG_INFO, "IKEV2: Unsupported encryption type"); return -1; } iv_len = encr_alg->block_size; integ_alg = ikev2_get_integ(integ_id); if (integ_alg == NULL) { wpa_printf(MSG_INFO, "IKEV2: Unsupported intergrity type"); return -1; } if (SK_e == NULL) { wpa_printf(MSG_INFO, "IKEV2: No SK_e available"); return -1; } if (SK_a == NULL) { wpa_printf(MSG_INFO, "IKEV2: No SK_a available"); return -1; } phdr = wpabuf_put(msg, sizeof(*phdr)); phdr->next_payload = next_payload; phdr->flags = 0; iv = wpabuf_put(msg, iv_len); if (random_get_bytes(iv, iv_len)) { wpa_printf(MSG_INFO, "IKEV2: Could not generate IV"); return -1; } pad_len = iv_len - (wpabuf_len(plain) + 1) % iv_len; if (pad_len == iv_len) pad_len = 0; wpabuf_put(plain, pad_len); wpabuf_put_u8(plain, pad_len); if (ikev2_encr_encrypt(encr_alg->id, SK_e, keys->SK_encr_len, iv, wpabuf_head(plain), wpabuf_mhead(plain), wpabuf_len(plain)) < 0) return -1; wpabuf_put_buf(msg, plain); /* Need to update all headers (Length fields) prior to hash func */ icv = wpabuf_put(msg, integ_alg->hash_len); plen = (u8 *) wpabuf_put(msg, 0) - (u8 *) phdr; WPA_PUT_BE16(phdr->payload_length, plen); ikev2_update_hdr(msg); return ikev2_integ_hash(integ_id, SK_a, keys->SK_integ_len, wpabuf_head(msg), wpabuf_len(msg) - integ_alg->hash_len, icv); return 0; } int ikev2_keys_set(struct ikev2_keys *keys) { return keys->SK_d && keys->SK_ai && keys->SK_ar && keys->SK_ei && keys->SK_er && keys->SK_pi && keys->SK_pr; } void ikev2_free_keys(struct ikev2_keys *keys) { os_free(keys->SK_d); os_free(keys->SK_ai); os_free(keys->SK_ar); os_free(keys->SK_ei); os_free(keys->SK_er); os_free(keys->SK_pi); os_free(keys->SK_pr); keys->SK_d = keys->SK_ai = keys->SK_ar = keys->SK_ei = keys->SK_er = keys->SK_pi = keys->SK_pr = NULL; } int ikev2_derive_sk_keys(const struct ikev2_prf_alg *prf, const struct ikev2_integ_alg *integ, const struct ikev2_encr_alg *encr, const u8 *skeyseed, const u8 *data, size_t data_len, struct ikev2_keys *keys) { u8 *keybuf, *pos; size_t keybuf_len; /* * {SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr } = * prf+(SKEYSEED, Ni | Nr | SPIi | SPIr ) */ ikev2_free_keys(keys); keys->SK_d_len = prf->key_len; keys->SK_integ_len = integ->key_len; keys->SK_encr_len = encr->key_len; keys->SK_prf_len = prf->key_len; keybuf_len = keys->SK_d_len + 2 * keys->SK_integ_len + 2 * keys->SK_encr_len + 2 * keys->SK_prf_len; keybuf = os_malloc(keybuf_len); if (keybuf == NULL) return -1; if (ikev2_prf_plus(prf->id, skeyseed, prf->hash_len, data, data_len, keybuf, keybuf_len)) { os_free(keybuf); return -1; } pos = keybuf; keys->SK_d = os_malloc(keys->SK_d_len); if (keys->SK_d) { os_memcpy(keys->SK_d, pos, keys->SK_d_len); wpa_hexdump_key(MSG_DEBUG, "IKEV2: SK_d", keys->SK_d, keys->SK_d_len); } pos += keys->SK_d_len; keys->SK_ai = os_malloc(keys->SK_integ_len); if (keys->SK_ai) { os_memcpy(keys->SK_ai, pos, keys->SK_integ_len); wpa_hexdump_key(MSG_DEBUG, "IKEV2: SK_ai", keys->SK_ai, keys->SK_integ_len); } pos += keys->SK_integ_len; keys->SK_ar = os_malloc(keys->SK_integ_len); if (keys->SK_ar) { os_memcpy(keys->SK_ar, pos, keys->SK_integ_len); wpa_hexdump_key(MSG_DEBUG, "IKEV2: SK_ar", keys->SK_ar, keys->SK_integ_len); } pos += keys->SK_integ_len; keys->SK_ei = os_malloc(keys->SK_encr_len); if (keys->SK_ei) { os_memcpy(keys->SK_ei, pos, keys->SK_encr_len); wpa_hexdump_key(MSG_DEBUG, "IKEV2: SK_ei", keys->SK_ei, keys->SK_encr_len); } pos += keys->SK_encr_len; keys->SK_er = os_malloc(keys->SK_encr_len); if (keys->SK_er) { os_memcpy(keys->SK_er, pos, keys->SK_encr_len); wpa_hexdump_key(MSG_DEBUG, "IKEV2: SK_er", keys->SK_er, keys->SK_encr_len); } pos += keys->SK_encr_len; keys->SK_pi = os_malloc(keys->SK_prf_len); if (keys->SK_pi) { os_memcpy(keys->SK_pi, pos, keys->SK_prf_len); wpa_hexdump_key(MSG_DEBUG, "IKEV2: SK_pi", keys->SK_pi, keys->SK_prf_len); } pos += keys->SK_prf_len; keys->SK_pr = os_malloc(keys->SK_prf_len); if (keys->SK_pr) { os_memcpy(keys->SK_pr, pos, keys->SK_prf_len); wpa_hexdump_key(MSG_DEBUG, "IKEV2: SK_pr", keys->SK_pr, keys->SK_prf_len); } os_free(keybuf); if (!ikev2_keys_set(keys)) { ikev2_free_keys(keys); return -1; } return 0; }