mirror of
https://github.com/vanhoefm/fragattacks.git
synced 2024-11-28 18:28:23 -05:00
Internal LibTomMath: add optional support for Montgomery reduction
Add a cost of about 2.5 kB of additional cost, the internal LibTomMath can be configured to include fast exptmod routine to speed up DH and RSA. This can be enabled with CONFIG_INTERNAL_LIBTOMMATH_FAST_EXPTMOD=y in .config.
This commit is contained in:
parent
0527710dd3
commit
8ccc0402b2
@ -30,6 +30,15 @@
|
||||
#define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
|
||||
* would require other than mp_reduce */
|
||||
|
||||
#ifdef LTM_FAST_EXPTMOD
|
||||
/* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */
|
||||
#define BN_MP_EXPTMOD_FAST_C
|
||||
#define BN_MP_MONTGOMERY_SETUP_C
|
||||
#define BN_FAST_MP_MONTGOMERY_REDUCE_C
|
||||
#define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
|
||||
#define BN_MP_MUL_2_C
|
||||
#endif /* LTM_FAST_EXPTMOD */
|
||||
|
||||
/* Current uses do not require support for negative exponent in exptmod, so we
|
||||
* can save about 1.5 kB in leaving out invmod. */
|
||||
#define LTM_NO_NEG_EXP
|
||||
@ -144,6 +153,9 @@ static int mp_2expt(mp_int * a, int b);
|
||||
static int mp_reduce_setup(mp_int * a, mp_int * b);
|
||||
static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu);
|
||||
static int mp_init_size(mp_int * a, int size);
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
|
||||
#endif /* BN_MP_EXPTMOD_FAST_C */
|
||||
|
||||
|
||||
|
||||
@ -2383,3 +2395,599 @@ static int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
mp_clear (&t);
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
|
||||
#ifdef BN_MP_MONTGOMERY_SETUP_C
|
||||
/* setups the montgomery reduction stuff */
|
||||
static int
|
||||
mp_montgomery_setup (mp_int * n, mp_digit * rho)
|
||||
{
|
||||
mp_digit x, b;
|
||||
|
||||
/* fast inversion mod 2**k
|
||||
*
|
||||
* Based on the fact that
|
||||
*
|
||||
* XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
|
||||
* => 2*X*A - X*X*A*A = 1
|
||||
* => 2*(1) - (1) = 1
|
||||
*/
|
||||
b = n->dp[0];
|
||||
|
||||
if ((b & 1) == 0) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
|
||||
x *= 2 - b * x; /* here x*a==1 mod 2**8 */
|
||||
#if !defined(MP_8BIT)
|
||||
x *= 2 - b * x; /* here x*a==1 mod 2**16 */
|
||||
#endif
|
||||
#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
|
||||
x *= 2 - b * x; /* here x*a==1 mod 2**32 */
|
||||
#endif
|
||||
#ifdef MP_64BIT
|
||||
x *= 2 - b * x; /* here x*a==1 mod 2**64 */
|
||||
#endif
|
||||
|
||||
/* rho = -1/m mod b */
|
||||
*rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
|
||||
/* computes xR**-1 == x (mod N) via Montgomery Reduction
|
||||
*
|
||||
* This is an optimized implementation of montgomery_reduce
|
||||
* which uses the comba method to quickly calculate the columns of the
|
||||
* reduction.
|
||||
*
|
||||
* Based on Algorithm 14.32 on pp.601 of HAC.
|
||||
*/
|
||||
int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
{
|
||||
int ix, res, olduse;
|
||||
mp_word W[MP_WARRAY];
|
||||
|
||||
/* get old used count */
|
||||
olduse = x->used;
|
||||
|
||||
/* grow a as required */
|
||||
if (x->alloc < n->used + 1) {
|
||||
if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* first we have to get the digits of the input into
|
||||
* an array of double precision words W[...]
|
||||
*/
|
||||
{
|
||||
register mp_word *_W;
|
||||
register mp_digit *tmpx;
|
||||
|
||||
/* alias for the W[] array */
|
||||
_W = W;
|
||||
|
||||
/* alias for the digits of x*/
|
||||
tmpx = x->dp;
|
||||
|
||||
/* copy the digits of a into W[0..a->used-1] */
|
||||
for (ix = 0; ix < x->used; ix++) {
|
||||
*_W++ = *tmpx++;
|
||||
}
|
||||
|
||||
/* zero the high words of W[a->used..m->used*2] */
|
||||
for (; ix < n->used * 2 + 1; ix++) {
|
||||
*_W++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* now we proceed to zero successive digits
|
||||
* from the least significant upwards
|
||||
*/
|
||||
for (ix = 0; ix < n->used; ix++) {
|
||||
/* mu = ai * m' mod b
|
||||
*
|
||||
* We avoid a double precision multiplication (which isn't required)
|
||||
* by casting the value down to a mp_digit. Note this requires
|
||||
* that W[ix-1] have the carry cleared (see after the inner loop)
|
||||
*/
|
||||
register mp_digit mu;
|
||||
mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
|
||||
|
||||
/* a = a + mu * m * b**i
|
||||
*
|
||||
* This is computed in place and on the fly. The multiplication
|
||||
* by b**i is handled by offseting which columns the results
|
||||
* are added to.
|
||||
*
|
||||
* Note the comba method normally doesn't handle carries in the
|
||||
* inner loop In this case we fix the carry from the previous
|
||||
* column since the Montgomery reduction requires digits of the
|
||||
* result (so far) [see above] to work. This is
|
||||
* handled by fixing up one carry after the inner loop. The
|
||||
* carry fixups are done in order so after these loops the
|
||||
* first m->used words of W[] have the carries fixed
|
||||
*/
|
||||
{
|
||||
register int iy;
|
||||
register mp_digit *tmpn;
|
||||
register mp_word *_W;
|
||||
|
||||
/* alias for the digits of the modulus */
|
||||
tmpn = n->dp;
|
||||
|
||||
/* Alias for the columns set by an offset of ix */
|
||||
_W = W + ix;
|
||||
|
||||
/* inner loop */
|
||||
for (iy = 0; iy < n->used; iy++) {
|
||||
*_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
|
||||
}
|
||||
}
|
||||
|
||||
/* now fix carry for next digit, W[ix+1] */
|
||||
W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* now we have to propagate the carries and
|
||||
* shift the words downward [all those least
|
||||
* significant digits we zeroed].
|
||||
*/
|
||||
{
|
||||
register mp_digit *tmpx;
|
||||
register mp_word *_W, *_W1;
|
||||
|
||||
/* nox fix rest of carries */
|
||||
|
||||
/* alias for current word */
|
||||
_W1 = W + ix;
|
||||
|
||||
/* alias for next word, where the carry goes */
|
||||
_W = W + ++ix;
|
||||
|
||||
for (; ix <= n->used * 2 + 1; ix++) {
|
||||
*_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* copy out, A = A/b**n
|
||||
*
|
||||
* The result is A/b**n but instead of converting from an
|
||||
* array of mp_word to mp_digit than calling mp_rshd
|
||||
* we just copy them in the right order
|
||||
*/
|
||||
|
||||
/* alias for destination word */
|
||||
tmpx = x->dp;
|
||||
|
||||
/* alias for shifted double precision result */
|
||||
_W = W + n->used;
|
||||
|
||||
for (ix = 0; ix < n->used + 1; ix++) {
|
||||
*tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
|
||||
}
|
||||
|
||||
/* zero oldused digits, if the input a was larger than
|
||||
* m->used+1 we'll have to clear the digits
|
||||
*/
|
||||
for (; ix < olduse; ix++) {
|
||||
*tmpx++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* set the max used and clamp */
|
||||
x->used = n->used + 1;
|
||||
mp_clamp (x);
|
||||
|
||||
/* if A >= m then A = A - m */
|
||||
if (mp_cmp_mag (x, n) != MP_LT) {
|
||||
return s_mp_sub (x, n, x);
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef BN_MP_MUL_2_C
|
||||
/* b = a*2 */
|
||||
static int mp_mul_2(mp_int * a, mp_int * b)
|
||||
{
|
||||
int x, res, oldused;
|
||||
|
||||
/* grow to accomodate result */
|
||||
if (b->alloc < a->used + 1) {
|
||||
if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
oldused = b->used;
|
||||
b->used = a->used;
|
||||
|
||||
{
|
||||
register mp_digit r, rr, *tmpa, *tmpb;
|
||||
|
||||
/* alias for source */
|
||||
tmpa = a->dp;
|
||||
|
||||
/* alias for dest */
|
||||
tmpb = b->dp;
|
||||
|
||||
/* carry */
|
||||
r = 0;
|
||||
for (x = 0; x < a->used; x++) {
|
||||
|
||||
/* get what will be the *next* carry bit from the
|
||||
* MSB of the current digit
|
||||
*/
|
||||
rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
|
||||
|
||||
/* now shift up this digit, add in the carry [from the previous] */
|
||||
*tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
|
||||
|
||||
/* copy the carry that would be from the source
|
||||
* digit into the next iteration
|
||||
*/
|
||||
r = rr;
|
||||
}
|
||||
|
||||
/* new leading digit? */
|
||||
if (r != 0) {
|
||||
/* add a MSB which is always 1 at this point */
|
||||
*tmpb = 1;
|
||||
++(b->used);
|
||||
}
|
||||
|
||||
/* now zero any excess digits on the destination
|
||||
* that we didn't write to
|
||||
*/
|
||||
tmpb = b->dp + b->used;
|
||||
for (x = b->used; x < oldused; x++) {
|
||||
*tmpb++ = 0;
|
||||
}
|
||||
}
|
||||
b->sign = a->sign;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
|
||||
/*
|
||||
* shifts with subtractions when the result is greater than b.
|
||||
*
|
||||
* The method is slightly modified to shift B unconditionally upto just under
|
||||
* the leading bit of b. This saves alot of multiple precision shifting.
|
||||
*/
|
||||
static int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
|
||||
{
|
||||
int x, bits, res;
|
||||
|
||||
/* how many bits of last digit does b use */
|
||||
bits = mp_count_bits (b) % DIGIT_BIT;
|
||||
|
||||
if (b->used > 1) {
|
||||
if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
} else {
|
||||
mp_set(a, 1);
|
||||
bits = 1;
|
||||
}
|
||||
|
||||
|
||||
/* now compute C = A * B mod b */
|
||||
for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
|
||||
if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if (mp_cmp_mag (a, b) != MP_LT) {
|
||||
if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
|
||||
*
|
||||
* Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
|
||||
* The value of k changes based on the size of the exponent.
|
||||
*
|
||||
* Uses Montgomery or Diminished Radix reduction [whichever appropriate]
|
||||
*/
|
||||
|
||||
static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
||||
{
|
||||
mp_int M[TAB_SIZE], res;
|
||||
mp_digit buf, mp;
|
||||
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
||||
|
||||
/* use a pointer to the reduction algorithm. This allows us to use
|
||||
* one of many reduction algorithms without modding the guts of
|
||||
* the code with if statements everywhere.
|
||||
*/
|
||||
int (*redux)(mp_int*,mp_int*,mp_digit);
|
||||
|
||||
/* find window size */
|
||||
x = mp_count_bits (X);
|
||||
if (x <= 7) {
|
||||
winsize = 2;
|
||||
} else if (x <= 36) {
|
||||
winsize = 3;
|
||||
} else if (x <= 140) {
|
||||
winsize = 4;
|
||||
} else if (x <= 450) {
|
||||
winsize = 5;
|
||||
} else if (x <= 1303) {
|
||||
winsize = 6;
|
||||
} else if (x <= 3529) {
|
||||
winsize = 7;
|
||||
} else {
|
||||
winsize = 8;
|
||||
}
|
||||
|
||||
#ifdef MP_LOW_MEM
|
||||
if (winsize > 5) {
|
||||
winsize = 5;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* init M array */
|
||||
/* init first cell */
|
||||
if ((err = mp_init(&M[1])) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* now init the second half of the array */
|
||||
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
||||
if ((err = mp_init(&M[x])) != MP_OKAY) {
|
||||
for (y = 1<<(winsize-1); y < x; y++) {
|
||||
mp_clear (&M[y]);
|
||||
}
|
||||
mp_clear(&M[1]);
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* determine and setup reduction code */
|
||||
if (redmode == 0) {
|
||||
#ifdef BN_MP_MONTGOMERY_SETUP_C
|
||||
/* now setup montgomery */
|
||||
if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
|
||||
/* automatically pick the comba one if available (saves quite a few calls/ifs) */
|
||||
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
|
||||
if (((P->used * 2 + 1) < MP_WARRAY) &&
|
||||
P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
||||
redux = fast_mp_montgomery_reduce;
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
#ifdef BN_MP_MONTGOMERY_REDUCE_C
|
||||
/* use slower baseline Montgomery method */
|
||||
redux = mp_montgomery_reduce;
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
}
|
||||
} else if (redmode == 1) {
|
||||
#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
|
||||
/* setup DR reduction for moduli of the form B**k - b */
|
||||
mp_dr_setup(P, &mp);
|
||||
redux = mp_dr_reduce;
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
} else {
|
||||
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
|
||||
/* setup DR reduction for moduli of the form 2**k - b */
|
||||
if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
redux = mp_reduce_2k;
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* setup result */
|
||||
if ((err = mp_init (&res)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
|
||||
/* create M table
|
||||
*
|
||||
|
||||
*
|
||||
* The first half of the table is not computed though accept for M[0] and M[1]
|
||||
*/
|
||||
|
||||
if (redmode == 0) {
|
||||
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
|
||||
/* now we need R mod m */
|
||||
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_RES;
|
||||
#endif
|
||||
|
||||
/* now set M[1] to G * R mod m */
|
||||
if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
} else {
|
||||
mp_set(&res, 1);
|
||||
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
||||
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
for (x = 0; x < (winsize - 1); x++) {
|
||||
if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* create upper table */
|
||||
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
||||
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* set initial mode and bit cnt */
|
||||
mode = 0;
|
||||
bitcnt = 1;
|
||||
buf = 0;
|
||||
digidx = X->used - 1;
|
||||
bitcpy = 0;
|
||||
bitbuf = 0;
|
||||
|
||||
for (;;) {
|
||||
/* grab next digit as required */
|
||||
if (--bitcnt == 0) {
|
||||
/* if digidx == -1 we are out of digits so break */
|
||||
if (digidx == -1) {
|
||||
break;
|
||||
}
|
||||
/* read next digit and reset bitcnt */
|
||||
buf = X->dp[digidx--];
|
||||
bitcnt = (int)DIGIT_BIT;
|
||||
}
|
||||
|
||||
/* grab the next msb from the exponent */
|
||||
y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
|
||||
buf <<= (mp_digit)1;
|
||||
|
||||
/* if the bit is zero and mode == 0 then we ignore it
|
||||
* These represent the leading zero bits before the first 1 bit
|
||||
* in the exponent. Technically this opt is not required but it
|
||||
* does lower the # of trivial squaring/reductions used
|
||||
*/
|
||||
if (mode == 0 && y == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* if the bit is zero and mode == 1 then we square */
|
||||
if (mode == 1 && y == 0) {
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
/* else we add it to the window */
|
||||
bitbuf |= (y << (winsize - ++bitcpy));
|
||||
mode = 2;
|
||||
|
||||
if (bitcpy == winsize) {
|
||||
/* ok window is filled so square as required and multiply */
|
||||
/* square first */
|
||||
for (x = 0; x < winsize; x++) {
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* then multiply */
|
||||
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
/* empty window and reset */
|
||||
bitcpy = 0;
|
||||
bitbuf = 0;
|
||||
mode = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* if bits remain then square/multiply */
|
||||
if (mode == 2 && bitcpy > 0) {
|
||||
/* square then multiply if the bit is set */
|
||||
for (x = 0; x < bitcpy; x++) {
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
/* get next bit of the window */
|
||||
bitbuf <<= 1;
|
||||
if ((bitbuf & (1 << winsize)) != 0) {
|
||||
/* then multiply */
|
||||
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (redmode == 0) {
|
||||
/* fixup result if Montgomery reduction is used
|
||||
* recall that any value in a Montgomery system is
|
||||
* actually multiplied by R mod n. So we have
|
||||
* to reduce one more time to cancel out the factor
|
||||
* of R.
|
||||
*/
|
||||
if ((err = redux(&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* swap res with Y */
|
||||
mp_exch (&res, Y);
|
||||
err = MP_OKAY;
|
||||
LBL_RES:mp_clear (&res);
|
||||
LBL_M:
|
||||
mp_clear(&M[1]);
|
||||
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
||||
mp_clear (&M[x]);
|
||||
}
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
@ -621,6 +621,9 @@ CFLAGS += -DCONFIG_TLS_INTERNAL_CLIENT
|
||||
ifeq ($(CONFIG_CRYPTO), internal)
|
||||
ifdef CONFIG_INTERNAL_LIBTOMMATH
|
||||
CFLAGS += -DCONFIG_INTERNAL_LIBTOMMATH
|
||||
ifdef CONFIG_INTERNAL_LIBTOMMATH_FAST_EXPTMOD
|
||||
CFLAGS += -DLTM_FAST_EXPTMOD
|
||||
endif
|
||||
else
|
||||
LIBS += -ltommath
|
||||
LIBS_p += -ltommath
|
||||
|
@ -307,6 +307,9 @@ CONFIG_PEERKEY=y
|
||||
#LIBS += -L$(LTM_PATH)
|
||||
#LIBS_p += -L$(LTM_PATH)
|
||||
#endif
|
||||
# Add a cost of about 2.5 kB of additional cost, the internal LibTomMath can be
|
||||
# configured to include fast exptmod routine to speed up DH and RSA.
|
||||
#CONFIG_INTERNAL_LIBTOMMATH_FAST_EXPTMOD=y
|
||||
|
||||
# Include NDIS event processing through WMI into wpa_supplicant/wpasvc.
|
||||
# This is only for Windows builds and requires WMI-related header files and
|
||||
|
Loading…
Reference in New Issue
Block a user