fragattacks/src/ap/wpa_auth.c

2479 lines
64 KiB
C
Raw Normal View History

/*
* hostapd - IEEE 802.11i-2004 / WPA Authenticator
* Copyright (c) 2004-2009, Jouni Malinen <j@w1.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*
* See README and COPYING for more details.
*/
#include "utils/includes.h"
#ifndef CONFIG_NATIVE_WINDOWS
#include "utils/common.h"
#include "utils/eloop.h"
#include "utils/state_machine.h"
#include "common/ieee802_11_defs.h"
#include "crypto/aes_wrap.h"
#include "crypto/crypto.h"
#include "crypto/sha1.h"
#include "crypto/sha256.h"
#include "eapol_auth/eapol_auth_sm.h"
#include "ap_config.h"
#include "ieee802_11.h"
#include "wpa_auth.h"
#include "pmksa_cache_auth.h"
#include "wpa_auth_i.h"
#include "wpa_auth_ie.h"
#define STATE_MACHINE_DATA struct wpa_state_machine
#define STATE_MACHINE_DEBUG_PREFIX "WPA"
#define STATE_MACHINE_ADDR sm->addr
static void wpa_send_eapol_timeout(void *eloop_ctx, void *timeout_ctx);
static int wpa_sm_step(struct wpa_state_machine *sm);
static int wpa_verify_key_mic(struct wpa_ptk *PTK, u8 *data, size_t data_len);
static void wpa_sm_call_step(void *eloop_ctx, void *timeout_ctx);
static void wpa_group_sm_step(struct wpa_authenticator *wpa_auth,
struct wpa_group *group);
static void wpa_request_new_ptk(struct wpa_state_machine *sm);
static int wpa_gtk_update(struct wpa_authenticator *wpa_auth,
struct wpa_group *group);
static const u32 dot11RSNAConfigGroupUpdateCount = 4;
static const u32 dot11RSNAConfigPairwiseUpdateCount = 4;
static const u32 eapol_key_timeout_first = 100; /* ms */
static const u32 eapol_key_timeout_subseq = 1000; /* ms */
/* TODO: make these configurable */
static const int dot11RSNAConfigPMKLifetime = 43200;
static const int dot11RSNAConfigPMKReauthThreshold = 70;
static const int dot11RSNAConfigSATimeout = 60;
static inline void wpa_auth_mic_failure_report(
struct wpa_authenticator *wpa_auth, const u8 *addr)
{
if (wpa_auth->cb.mic_failure_report)
wpa_auth->cb.mic_failure_report(wpa_auth->cb.ctx, addr);
}
static inline void wpa_auth_set_eapol(struct wpa_authenticator *wpa_auth,
const u8 *addr, wpa_eapol_variable var,
int value)
{
if (wpa_auth->cb.set_eapol)
wpa_auth->cb.set_eapol(wpa_auth->cb.ctx, addr, var, value);
}
static inline int wpa_auth_get_eapol(struct wpa_authenticator *wpa_auth,
const u8 *addr, wpa_eapol_variable var)
{
if (wpa_auth->cb.get_eapol == NULL)
return -1;
return wpa_auth->cb.get_eapol(wpa_auth->cb.ctx, addr, var);
}
static inline const u8 * wpa_auth_get_psk(struct wpa_authenticator *wpa_auth,
const u8 *addr, const u8 *prev_psk)
{
if (wpa_auth->cb.get_psk == NULL)
return NULL;
return wpa_auth->cb.get_psk(wpa_auth->cb.ctx, addr, prev_psk);
}
static inline int wpa_auth_get_msk(struct wpa_authenticator *wpa_auth,
const u8 *addr, u8 *msk, size_t *len)
{
if (wpa_auth->cb.get_msk == NULL)
return -1;
return wpa_auth->cb.get_msk(wpa_auth->cb.ctx, addr, msk, len);
}
static inline int wpa_auth_set_key(struct wpa_authenticator *wpa_auth,
int vlan_id,
enum wpa_alg alg, const u8 *addr, int idx,
u8 *key, size_t key_len)
{
if (wpa_auth->cb.set_key == NULL)
return -1;
return wpa_auth->cb.set_key(wpa_auth->cb.ctx, vlan_id, alg, addr, idx,
key, key_len);
}
static inline int wpa_auth_get_seqnum(struct wpa_authenticator *wpa_auth,
const u8 *addr, int idx, u8 *seq)
{
if (wpa_auth->cb.get_seqnum == NULL)
return -1;
return wpa_auth->cb.get_seqnum(wpa_auth->cb.ctx, addr, idx, seq);
}
static inline int
wpa_auth_send_eapol(struct wpa_authenticator *wpa_auth, const u8 *addr,
const u8 *data, size_t data_len, int encrypt)
{
if (wpa_auth->cb.send_eapol == NULL)
return -1;
return wpa_auth->cb.send_eapol(wpa_auth->cb.ctx, addr, data, data_len,
encrypt);
}
int wpa_auth_for_each_sta(struct wpa_authenticator *wpa_auth,
int (*cb)(struct wpa_state_machine *sm, void *ctx),
void *cb_ctx)
{
if (wpa_auth->cb.for_each_sta == NULL)
return 0;
return wpa_auth->cb.for_each_sta(wpa_auth->cb.ctx, cb, cb_ctx);
}
int wpa_auth_for_each_auth(struct wpa_authenticator *wpa_auth,
int (*cb)(struct wpa_authenticator *a, void *ctx),
void *cb_ctx)
{
if (wpa_auth->cb.for_each_auth == NULL)
return 0;
return wpa_auth->cb.for_each_auth(wpa_auth->cb.ctx, cb, cb_ctx);
}
void wpa_auth_logger(struct wpa_authenticator *wpa_auth, const u8 *addr,
logger_level level, const char *txt)
{
if (wpa_auth->cb.logger == NULL)
return;
wpa_auth->cb.logger(wpa_auth->cb.ctx, addr, level, txt);
}
void wpa_auth_vlogger(struct wpa_authenticator *wpa_auth, const u8 *addr,
logger_level level, const char *fmt, ...)
{
char *format;
int maxlen;
va_list ap;
if (wpa_auth->cb.logger == NULL)
return;
maxlen = os_strlen(fmt) + 100;
format = os_malloc(maxlen);
if (!format)
return;
va_start(ap, fmt);
vsnprintf(format, maxlen, fmt, ap);
va_end(ap);
wpa_auth_logger(wpa_auth, addr, level, format);
os_free(format);
}
static void wpa_sta_disconnect(struct wpa_authenticator *wpa_auth,
const u8 *addr)
{
if (wpa_auth->cb.disconnect == NULL)
return;
wpa_auth->cb.disconnect(wpa_auth->cb.ctx, addr,
WLAN_REASON_PREV_AUTH_NOT_VALID);
}
static int wpa_use_aes_cmac(struct wpa_state_machine *sm)
{
int ret = 0;
#ifdef CONFIG_IEEE80211R
if (wpa_key_mgmt_ft(sm->wpa_key_mgmt))
ret = 1;
#endif /* CONFIG_IEEE80211R */
#ifdef CONFIG_IEEE80211W
if (wpa_key_mgmt_sha256(sm->wpa_key_mgmt))
ret = 1;
#endif /* CONFIG_IEEE80211W */
return ret;
}
static void wpa_rekey_gmk(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_authenticator *wpa_auth = eloop_ctx;
if (os_get_random(wpa_auth->group->GMK, WPA_GMK_LEN)) {
wpa_printf(MSG_ERROR, "Failed to get random data for WPA "
"initialization.");
} else {
wpa_auth_logger(wpa_auth, NULL, LOGGER_DEBUG, "GMK rekeyd");
}
if (wpa_auth->conf.wpa_gmk_rekey) {
eloop_register_timeout(wpa_auth->conf.wpa_gmk_rekey, 0,
wpa_rekey_gmk, wpa_auth, NULL);
}
}
static void wpa_rekey_gtk(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_authenticator *wpa_auth = eloop_ctx;
struct wpa_group *group;
wpa_auth_logger(wpa_auth, NULL, LOGGER_DEBUG, "rekeying GTK");
for (group = wpa_auth->group; group; group = group->next) {
group->GTKReKey = TRUE;
do {
group->changed = FALSE;
wpa_group_sm_step(wpa_auth, group);
} while (group->changed);
}
if (wpa_auth->conf.wpa_group_rekey) {
eloop_register_timeout(wpa_auth->conf.wpa_group_rekey,
0, wpa_rekey_gtk, wpa_auth, NULL);
}
}
static void wpa_rekey_ptk(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_authenticator *wpa_auth = eloop_ctx;
struct wpa_state_machine *sm = timeout_ctx;
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG, "rekeying PTK");
wpa_request_new_ptk(sm);
wpa_sm_step(sm);
}
static int wpa_auth_pmksa_clear_cb(struct wpa_state_machine *sm, void *ctx)
{
if (sm->pmksa == ctx)
sm->pmksa = NULL;
return 0;
}
static void wpa_auth_pmksa_free_cb(struct rsn_pmksa_cache_entry *entry,
void *ctx)
{
struct wpa_authenticator *wpa_auth = ctx;
wpa_auth_for_each_sta(wpa_auth, wpa_auth_pmksa_clear_cb, entry);
}
static void wpa_group_set_key_len(struct wpa_group *group, int cipher)
{
switch (cipher) {
case WPA_CIPHER_CCMP:
group->GTK_len = 16;
break;
case WPA_CIPHER_TKIP:
group->GTK_len = 32;
break;
case WPA_CIPHER_WEP104:
group->GTK_len = 13;
break;
case WPA_CIPHER_WEP40:
group->GTK_len = 5;
break;
}
}
static struct wpa_group * wpa_group_init(struct wpa_authenticator *wpa_auth,
int vlan_id)
{
struct wpa_group *group;
u8 buf[ETH_ALEN + 8 + sizeof(group)];
u8 rkey[32];
group = os_zalloc(sizeof(struct wpa_group));
if (group == NULL)
return NULL;
group->GTKAuthenticator = TRUE;
group->vlan_id = vlan_id;
wpa_group_set_key_len(group, wpa_auth->conf.wpa_group);
/* Counter = PRF-256(Random number, "Init Counter",
* Local MAC Address || Time)
*/
os_memcpy(buf, wpa_auth->addr, ETH_ALEN);
wpa_get_ntp_timestamp(buf + ETH_ALEN);
os_memcpy(buf + ETH_ALEN + 8, &group, sizeof(group));
if (os_get_random(rkey, sizeof(rkey)) ||
os_get_random(group->GMK, WPA_GMK_LEN)) {
wpa_printf(MSG_ERROR, "Failed to get random data for WPA "
"initialization.");
os_free(group);
return NULL;
}
sha1_prf(rkey, sizeof(rkey), "Init Counter", buf, sizeof(buf),
group->Counter, WPA_NONCE_LEN);
group->GInit = TRUE;
wpa_group_sm_step(wpa_auth, group);
group->GInit = FALSE;
wpa_group_sm_step(wpa_auth, group);
return group;
}
/**
* wpa_init - Initialize WPA authenticator
* @addr: Authenticator address
* @conf: Configuration for WPA authenticator
2009-01-02 15:28:04 -05:00
* @cb: Callback functions for WPA authenticator
* Returns: Pointer to WPA authenticator data or %NULL on failure
*/
struct wpa_authenticator * wpa_init(const u8 *addr,
struct wpa_auth_config *conf,
struct wpa_auth_callbacks *cb)
{
struct wpa_authenticator *wpa_auth;
wpa_auth = os_zalloc(sizeof(struct wpa_authenticator));
if (wpa_auth == NULL)
return NULL;
os_memcpy(wpa_auth->addr, addr, ETH_ALEN);
os_memcpy(&wpa_auth->conf, conf, sizeof(*conf));
os_memcpy(&wpa_auth->cb, cb, sizeof(*cb));
if (wpa_auth_gen_wpa_ie(wpa_auth)) {
wpa_printf(MSG_ERROR, "Could not generate WPA IE.");
os_free(wpa_auth);
return NULL;
}
wpa_auth->group = wpa_group_init(wpa_auth, 0);
if (wpa_auth->group == NULL) {
os_free(wpa_auth->wpa_ie);
os_free(wpa_auth);
return NULL;
}
wpa_auth->pmksa = pmksa_cache_auth_init(wpa_auth_pmksa_free_cb,
wpa_auth);
if (wpa_auth->pmksa == NULL) {
wpa_printf(MSG_ERROR, "PMKSA cache initialization failed.");
os_free(wpa_auth->wpa_ie);
os_free(wpa_auth);
return NULL;
}
#ifdef CONFIG_IEEE80211R
wpa_auth->ft_pmk_cache = wpa_ft_pmk_cache_init();
if (wpa_auth->ft_pmk_cache == NULL) {
wpa_printf(MSG_ERROR, "FT PMK cache initialization failed.");
os_free(wpa_auth->wpa_ie);
pmksa_cache_auth_deinit(wpa_auth->pmksa);
os_free(wpa_auth);
return NULL;
}
#endif /* CONFIG_IEEE80211R */
if (wpa_auth->conf.wpa_gmk_rekey) {
eloop_register_timeout(wpa_auth->conf.wpa_gmk_rekey, 0,
wpa_rekey_gmk, wpa_auth, NULL);
}
if (wpa_auth->conf.wpa_group_rekey) {
eloop_register_timeout(wpa_auth->conf.wpa_group_rekey, 0,
wpa_rekey_gtk, wpa_auth, NULL);
}
return wpa_auth;
}
/**
* wpa_deinit - Deinitialize WPA authenticator
* @wpa_auth: Pointer to WPA authenticator data from wpa_init()
*/
void wpa_deinit(struct wpa_authenticator *wpa_auth)
{
struct wpa_group *group, *prev;
eloop_cancel_timeout(wpa_rekey_gmk, wpa_auth, NULL);
eloop_cancel_timeout(wpa_rekey_gtk, wpa_auth, NULL);
#ifdef CONFIG_PEERKEY
while (wpa_auth->stsl_negotiations)
wpa_stsl_remove(wpa_auth, wpa_auth->stsl_negotiations);
#endif /* CONFIG_PEERKEY */
pmksa_cache_auth_deinit(wpa_auth->pmksa);
#ifdef CONFIG_IEEE80211R
wpa_ft_pmk_cache_deinit(wpa_auth->ft_pmk_cache);
wpa_auth->ft_pmk_cache = NULL;
#endif /* CONFIG_IEEE80211R */
os_free(wpa_auth->wpa_ie);
group = wpa_auth->group;
while (group) {
prev = group;
group = group->next;
os_free(prev);
}
os_free(wpa_auth);
}
/**
* wpa_reconfig - Update WPA authenticator configuration
* @wpa_auth: Pointer to WPA authenticator data from wpa_init()
* @conf: Configuration for WPA authenticator
*/
int wpa_reconfig(struct wpa_authenticator *wpa_auth,
struct wpa_auth_config *conf)
{
struct wpa_group *group;
if (wpa_auth == NULL)
return 0;
os_memcpy(&wpa_auth->conf, conf, sizeof(*conf));
if (wpa_auth_gen_wpa_ie(wpa_auth)) {
wpa_printf(MSG_ERROR, "Could not generate WPA IE.");
return -1;
}
/*
* Reinitialize GTK to make sure it is suitable for the new
* configuration.
*/
group = wpa_auth->group;
wpa_group_set_key_len(group, wpa_auth->conf.wpa_group);
group->GInit = TRUE;
wpa_group_sm_step(wpa_auth, group);
group->GInit = FALSE;
wpa_group_sm_step(wpa_auth, group);
return 0;
}
struct wpa_state_machine *
wpa_auth_sta_init(struct wpa_authenticator *wpa_auth, const u8 *addr)
{
struct wpa_state_machine *sm;
sm = os_zalloc(sizeof(struct wpa_state_machine));
if (sm == NULL)
return NULL;
os_memcpy(sm->addr, addr, ETH_ALEN);
sm->wpa_auth = wpa_auth;
sm->group = wpa_auth->group;
return sm;
}
int wpa_auth_sta_associated(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm)
{
if (wpa_auth == NULL || !wpa_auth->conf.wpa || sm == NULL)
return -1;
#ifdef CONFIG_IEEE80211R
if (sm->ft_completed) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG,
"FT authentication already completed - do not "
"start 4-way handshake");
return 0;
}
#endif /* CONFIG_IEEE80211R */
if (sm->started) {
os_memset(&sm->key_replay, 0, sizeof(sm->key_replay));
sm->ReAuthenticationRequest = TRUE;
return wpa_sm_step(sm);
}
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG,
"start authentication");
sm->started = 1;
sm->Init = TRUE;
if (wpa_sm_step(sm) == 1)
return 1; /* should not really happen */
sm->Init = FALSE;
sm->AuthenticationRequest = TRUE;
return wpa_sm_step(sm);
}
void wpa_auth_sta_no_wpa(struct wpa_state_machine *sm)
{
/* WPA/RSN was not used - clear WPA state. This is needed if the STA
* reassociates back to the same AP while the previous entry for the
* STA has not yet been removed. */
if (sm == NULL)
return;
sm->wpa_key_mgmt = 0;
}
static void wpa_free_sta_sm(struct wpa_state_machine *sm)
{
os_free(sm->last_rx_eapol_key);
os_free(sm->wpa_ie);
os_free(sm);
}
void wpa_auth_sta_deinit(struct wpa_state_machine *sm)
{
if (sm == NULL)
return;
if (sm->wpa_auth->conf.wpa_strict_rekey && sm->has_GTK) {
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"strict rekeying - force GTK rekey since STA "
"is leaving");
eloop_cancel_timeout(wpa_rekey_gtk, sm->wpa_auth, NULL);
eloop_register_timeout(0, 500000, wpa_rekey_gtk, sm->wpa_auth,
NULL);
}
eloop_cancel_timeout(wpa_send_eapol_timeout, sm->wpa_auth, sm);
eloop_cancel_timeout(wpa_sm_call_step, sm, NULL);
eloop_cancel_timeout(wpa_rekey_ptk, sm->wpa_auth, sm);
if (sm->in_step_loop) {
/* Must not free state machine while wpa_sm_step() is running.
* Freeing will be completed in the end of wpa_sm_step(). */
wpa_printf(MSG_DEBUG, "WPA: Registering pending STA state "
"machine deinit for " MACSTR, MAC2STR(sm->addr));
sm->pending_deinit = 1;
} else
wpa_free_sta_sm(sm);
}
static void wpa_request_new_ptk(struct wpa_state_machine *sm)
{
if (sm == NULL)
return;
sm->PTKRequest = TRUE;
sm->PTK_valid = 0;
}
static int wpa_replay_counter_valid(struct wpa_state_machine *sm,
const u8 *replay_counter)
{
int i;
for (i = 0; i < RSNA_MAX_EAPOL_RETRIES; i++) {
if (!sm->key_replay[i].valid)
break;
if (os_memcmp(replay_counter, sm->key_replay[i].counter,
WPA_REPLAY_COUNTER_LEN) == 0)
return 1;
}
return 0;
}
void wpa_receive(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm,
u8 *data, size_t data_len)
{
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
u16 key_info, key_data_length;
enum { PAIRWISE_2, PAIRWISE_4, GROUP_2, REQUEST,
SMK_M1, SMK_M3, SMK_ERROR } msg;
char *msgtxt;
struct wpa_eapol_ie_parse kde;
if (wpa_auth == NULL || !wpa_auth->conf.wpa || sm == NULL)
return;
if (data_len < sizeof(*hdr) + sizeof(*key))
return;
hdr = (struct ieee802_1x_hdr *) data;
key = (struct wpa_eapol_key *) (hdr + 1);
key_info = WPA_GET_BE16(key->key_info);
key_data_length = WPA_GET_BE16(key->key_data_length);
if (key_data_length > data_len - sizeof(*hdr) - sizeof(*key)) {
wpa_printf(MSG_INFO, "WPA: Invalid EAPOL-Key frame - "
"key_data overflow (%d > %lu)",
key_data_length,
(unsigned long) (data_len - sizeof(*hdr) -
sizeof(*key)));
return;
}
if (sm->wpa == WPA_VERSION_WPA2) {
if (key->type != EAPOL_KEY_TYPE_RSN) {
wpa_printf(MSG_DEBUG, "Ignore EAPOL-Key with "
"unexpected type %d in RSN mode",
key->type);
return;
}
} else {
if (key->type != EAPOL_KEY_TYPE_WPA) {
wpa_printf(MSG_DEBUG, "Ignore EAPOL-Key with "
"unexpected type %d in WPA mode",
key->type);
return;
}
}
/* FIX: verify that the EAPOL-Key frame was encrypted if pairwise keys
* are set */
if ((key_info & (WPA_KEY_INFO_SMK_MESSAGE | WPA_KEY_INFO_REQUEST)) ==
(WPA_KEY_INFO_SMK_MESSAGE | WPA_KEY_INFO_REQUEST)) {
if (key_info & WPA_KEY_INFO_ERROR) {
msg = SMK_ERROR;
msgtxt = "SMK Error";
} else {
msg = SMK_M1;
msgtxt = "SMK M1";
}
} else if (key_info & WPA_KEY_INFO_SMK_MESSAGE) {
msg = SMK_M3;
msgtxt = "SMK M3";
} else if (key_info & WPA_KEY_INFO_REQUEST) {
msg = REQUEST;
msgtxt = "Request";
} else if (!(key_info & WPA_KEY_INFO_KEY_TYPE)) {
msg = GROUP_2;
msgtxt = "2/2 Group";
} else if (key_data_length == 0) {
msg = PAIRWISE_4;
msgtxt = "4/4 Pairwise";
} else {
msg = PAIRWISE_2;
msgtxt = "2/4 Pairwise";
}
/* TODO: key_info type validation for PeerKey */
if (msg == REQUEST || msg == PAIRWISE_2 || msg == PAIRWISE_4 ||
msg == GROUP_2) {
u16 ver = key_info & WPA_KEY_INFO_TYPE_MASK;
if (sm->pairwise == WPA_CIPHER_CCMP) {
if (wpa_use_aes_cmac(sm) &&
ver != WPA_KEY_INFO_TYPE_AES_128_CMAC) {
wpa_auth_logger(wpa_auth, sm->addr,
LOGGER_WARNING,
"advertised support for "
"AES-128-CMAC, but did not "
"use it");
return;
}
if (!wpa_use_aes_cmac(sm) &&
ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
wpa_auth_logger(wpa_auth, sm->addr,
LOGGER_WARNING,
"did not use HMAC-SHA1-AES "
"with CCMP");
return;
}
}
}
if (key_info & WPA_KEY_INFO_REQUEST) {
if (sm->req_replay_counter_used &&
os_memcmp(key->replay_counter, sm->req_replay_counter,
WPA_REPLAY_COUNTER_LEN) <= 0) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_WARNING,
"received EAPOL-Key request with "
"replayed counter");
return;
}
}
if (!(key_info & WPA_KEY_INFO_REQUEST) &&
!wpa_replay_counter_valid(sm, key->replay_counter)) {
int i;
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key %s with unexpected "
"replay counter", msgtxt);
for (i = 0; i < RSNA_MAX_EAPOL_RETRIES; i++) {
if (!sm->key_replay[i].valid)
break;
wpa_hexdump(MSG_DEBUG, "pending replay counter",
sm->key_replay[i].counter,
WPA_REPLAY_COUNTER_LEN);
}
wpa_hexdump(MSG_DEBUG, "received replay counter",
key->replay_counter, WPA_REPLAY_COUNTER_LEN);
return;
}
switch (msg) {
case PAIRWISE_2:
if (sm->wpa_ptk_state != WPA_PTK_PTKSTART &&
sm->wpa_ptk_state != WPA_PTK_PTKCALCNEGOTIATING) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key msg 2/4 in "
"invalid state (%d) - dropped",
sm->wpa_ptk_state);
return;
}
if (sm->wpa_ie == NULL ||
sm->wpa_ie_len != key_data_length ||
os_memcmp(sm->wpa_ie, key + 1, key_data_length) != 0) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"WPA IE from (Re)AssocReq did not "
"match with msg 2/4");
if (sm->wpa_ie) {
wpa_hexdump(MSG_DEBUG, "WPA IE in AssocReq",
sm->wpa_ie, sm->wpa_ie_len);
}
wpa_hexdump(MSG_DEBUG, "WPA IE in msg 2/4",
(u8 *) (key + 1), key_data_length);
/* MLME-DEAUTHENTICATE.request */
wpa_sta_disconnect(wpa_auth, sm->addr);
return;
}
break;
case PAIRWISE_4:
if (sm->wpa_ptk_state != WPA_PTK_PTKINITNEGOTIATING ||
!sm->PTK_valid) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key msg 4/4 in "
"invalid state (%d) - dropped",
sm->wpa_ptk_state);
return;
}
break;
case GROUP_2:
if (sm->wpa_ptk_group_state != WPA_PTK_GROUP_REKEYNEGOTIATING
|| !sm->PTK_valid) {
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key msg 2/2 in "
"invalid state (%d) - dropped",
sm->wpa_ptk_group_state);
return;
}
break;
#ifdef CONFIG_PEERKEY
case SMK_M1:
case SMK_M3:
case SMK_ERROR:
if (!wpa_auth->conf.peerkey) {
wpa_printf(MSG_DEBUG, "RSN: SMK M1/M3/Error, but "
"PeerKey use disabled - ignoring message");
return;
}
if (!sm->PTK_valid) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key msg SMK in "
"invalid state - dropped");
return;
}
break;
#else /* CONFIG_PEERKEY */
case SMK_M1:
case SMK_M3:
case SMK_ERROR:
return; /* STSL disabled - ignore SMK messages */
#endif /* CONFIG_PEERKEY */
case REQUEST:
break;
}
wpa_auth_vlogger(wpa_auth, sm->addr, LOGGER_DEBUG,
"received EAPOL-Key frame (%s)", msgtxt);
if (key_info & WPA_KEY_INFO_ACK) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received invalid EAPOL-Key: Key Ack set");
return;
}
if (!(key_info & WPA_KEY_INFO_MIC)) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received invalid EAPOL-Key: Key MIC not set");
return;
}
sm->MICVerified = FALSE;
if (sm->PTK_valid) {
if (wpa_verify_key_mic(&sm->PTK, data, data_len)) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key with invalid MIC");
return;
}
sm->MICVerified = TRUE;
eloop_cancel_timeout(wpa_send_eapol_timeout, wpa_auth, sm);
}
if (key_info & WPA_KEY_INFO_REQUEST) {
if (sm->MICVerified) {
sm->req_replay_counter_used = 1;
os_memcpy(sm->req_replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
} else {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key request with "
"invalid MIC");
return;
}
/*
* TODO: should decrypt key data field if encryption was used;
* even though MAC address KDE is not normally encrypted,
* supplicant is allowed to encrypt it.
*/
if (msg == SMK_ERROR) {
#ifdef CONFIG_PEERKEY
wpa_smk_error(wpa_auth, sm, key);
#endif /* CONFIG_PEERKEY */
return;
} else if (key_info & WPA_KEY_INFO_ERROR) {
/* Supplicant reported a Michael MIC error */
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key Error Request "
"(STA detected Michael MIC failure)");
wpa_auth_mic_failure_report(wpa_auth, sm->addr);
sm->dot11RSNAStatsTKIPRemoteMICFailures++;
wpa_auth->dot11RSNAStatsTKIPRemoteMICFailures++;
/* Error report is not a request for a new key
* handshake, but since Authenticator may do it, let's
* change the keys now anyway. */
wpa_request_new_ptk(sm);
} else if (key_info & WPA_KEY_INFO_KEY_TYPE) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key Request for new "
"4-Way Handshake");
wpa_request_new_ptk(sm);
#ifdef CONFIG_PEERKEY
} else if (msg == SMK_M1) {
wpa_smk_m1(wpa_auth, sm, key);
#endif /* CONFIG_PEERKEY */
} else if (key_data_length > 0 &&
wpa_parse_kde_ies((const u8 *) (key + 1),
key_data_length, &kde) == 0 &&
kde.mac_addr) {
} else {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_INFO,
"received EAPOL-Key Request for GTK "
"rekeying");
/* FIX: why was this triggering PTK rekeying for the
* STA that requested Group Key rekeying?? */
/* wpa_request_new_ptk(sta->wpa_sm); */
eloop_cancel_timeout(wpa_rekey_gtk, wpa_auth, NULL);
wpa_rekey_gtk(wpa_auth, NULL);
}
} else {
/* Do not allow the same key replay counter to be reused. This
* does also invalidate all other pending replay counters if
* retransmissions were used, i.e., we will only process one of
* the pending replies and ignore rest if more than one is
* received. */
sm->key_replay[0].valid = FALSE;
}
#ifdef CONFIG_PEERKEY
if (msg == SMK_M3) {
wpa_smk_m3(wpa_auth, sm, key);
return;
}
#endif /* CONFIG_PEERKEY */
os_free(sm->last_rx_eapol_key);
sm->last_rx_eapol_key = os_malloc(data_len);
if (sm->last_rx_eapol_key == NULL)
return;
os_memcpy(sm->last_rx_eapol_key, data, data_len);
sm->last_rx_eapol_key_len = data_len;
sm->EAPOLKeyReceived = TRUE;
sm->EAPOLKeyPairwise = !!(key_info & WPA_KEY_INFO_KEY_TYPE);
sm->EAPOLKeyRequest = !!(key_info & WPA_KEY_INFO_REQUEST);
os_memcpy(sm->SNonce, key->key_nonce, WPA_NONCE_LEN);
wpa_sm_step(sm);
}
static void wpa_gmk_to_gtk(const u8 *gmk, const u8 *addr, const u8 *gnonce,
u8 *gtk, size_t gtk_len)
{
u8 data[ETH_ALEN + WPA_NONCE_LEN];
/* GTK = PRF-X(GMK, "Group key expansion", AA || GNonce) */
os_memcpy(data, addr, ETH_ALEN);
os_memcpy(data + ETH_ALEN, gnonce, WPA_NONCE_LEN);
#ifdef CONFIG_IEEE80211W
sha256_prf(gmk, WPA_GMK_LEN, "Group key expansion",
data, sizeof(data), gtk, gtk_len);
#else /* CONFIG_IEEE80211W */
sha1_prf(gmk, WPA_GMK_LEN, "Group key expansion",
data, sizeof(data), gtk, gtk_len);
#endif /* CONFIG_IEEE80211W */
wpa_hexdump_key(MSG_DEBUG, "GMK", gmk, WPA_GMK_LEN);
wpa_hexdump_key(MSG_DEBUG, "GTK", gtk, gtk_len);
}
static void wpa_send_eapol_timeout(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_authenticator *wpa_auth = eloop_ctx;
struct wpa_state_machine *sm = timeout_ctx;
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG, "EAPOL-Key timeout");
sm->TimeoutEvt = TRUE;
wpa_sm_step(sm);
}
void __wpa_send_eapol(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm, int key_info,
const u8 *key_rsc, const u8 *nonce,
const u8 *kde, size_t kde_len,
int keyidx, int encr, int force_version)
{
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
size_t len;
int alg;
int key_data_len, pad_len = 0;
u8 *buf, *pos;
int version, pairwise;
int i;
len = sizeof(struct ieee802_1x_hdr) + sizeof(struct wpa_eapol_key);
if (force_version)
version = force_version;
else if (wpa_use_aes_cmac(sm))
version = WPA_KEY_INFO_TYPE_AES_128_CMAC;
else if (sm->pairwise == WPA_CIPHER_CCMP)
version = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES;
else
version = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4;
pairwise = key_info & WPA_KEY_INFO_KEY_TYPE;
wpa_printf(MSG_DEBUG, "WPA: Send EAPOL(version=%d secure=%d mic=%d "
"ack=%d install=%d pairwise=%d kde_len=%lu keyidx=%d "
"encr=%d)",
version,
(key_info & WPA_KEY_INFO_SECURE) ? 1 : 0,
(key_info & WPA_KEY_INFO_MIC) ? 1 : 0,
(key_info & WPA_KEY_INFO_ACK) ? 1 : 0,
(key_info & WPA_KEY_INFO_INSTALL) ? 1 : 0,
pairwise, (unsigned long) kde_len, keyidx, encr);
key_data_len = kde_len;
if ((version == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES ||
version == WPA_KEY_INFO_TYPE_AES_128_CMAC) && encr) {
pad_len = key_data_len % 8;
if (pad_len)
pad_len = 8 - pad_len;
key_data_len += pad_len + 8;
}
len += key_data_len;
hdr = os_zalloc(len);
if (hdr == NULL)
return;
hdr->version = wpa_auth->conf.eapol_version;
hdr->type = IEEE802_1X_TYPE_EAPOL_KEY;
hdr->length = host_to_be16(len - sizeof(*hdr));
key = (struct wpa_eapol_key *) (hdr + 1);
key->type = sm->wpa == WPA_VERSION_WPA2 ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
key_info |= version;
if (encr && sm->wpa == WPA_VERSION_WPA2)
key_info |= WPA_KEY_INFO_ENCR_KEY_DATA;
if (sm->wpa != WPA_VERSION_WPA2)
key_info |= keyidx << WPA_KEY_INFO_KEY_INDEX_SHIFT;
WPA_PUT_BE16(key->key_info, key_info);
alg = pairwise ? sm->pairwise : wpa_auth->conf.wpa_group;
switch (alg) {
case WPA_CIPHER_CCMP:
WPA_PUT_BE16(key->key_length, 16);
break;
case WPA_CIPHER_TKIP:
WPA_PUT_BE16(key->key_length, 32);
break;
case WPA_CIPHER_WEP40:
WPA_PUT_BE16(key->key_length, 5);
break;
case WPA_CIPHER_WEP104:
WPA_PUT_BE16(key->key_length, 13);
break;
}
if (key_info & WPA_KEY_INFO_SMK_MESSAGE)
WPA_PUT_BE16(key->key_length, 0);
/* FIX: STSL: what to use as key_replay_counter? */
for (i = RSNA_MAX_EAPOL_RETRIES - 1; i > 0; i--) {
sm->key_replay[i].valid = sm->key_replay[i - 1].valid;
os_memcpy(sm->key_replay[i].counter,
sm->key_replay[i - 1].counter,
WPA_REPLAY_COUNTER_LEN);
}
inc_byte_array(sm->key_replay[0].counter, WPA_REPLAY_COUNTER_LEN);
os_memcpy(key->replay_counter, sm->key_replay[0].counter,
WPA_REPLAY_COUNTER_LEN);
sm->key_replay[0].valid = TRUE;
if (nonce)
os_memcpy(key->key_nonce, nonce, WPA_NONCE_LEN);
if (key_rsc)
os_memcpy(key->key_rsc, key_rsc, WPA_KEY_RSC_LEN);
if (kde && !encr) {
os_memcpy(key + 1, kde, kde_len);
WPA_PUT_BE16(key->key_data_length, kde_len);
} else if (encr && kde) {
buf = os_zalloc(key_data_len);
if (buf == NULL) {
os_free(hdr);
return;
}
pos = buf;
os_memcpy(pos, kde, kde_len);
pos += kde_len;
if (pad_len)
*pos++ = 0xdd;
wpa_hexdump_key(MSG_DEBUG, "Plaintext EAPOL-Key Key Data",
buf, key_data_len);
if (version == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES ||
version == WPA_KEY_INFO_TYPE_AES_128_CMAC) {
if (aes_wrap(sm->PTK.kek, (key_data_len - 8) / 8, buf,
(u8 *) (key + 1))) {
os_free(hdr);
os_free(buf);
return;
}
WPA_PUT_BE16(key->key_data_length, key_data_len);
} else {
u8 ek[32];
os_memcpy(key->key_iv,
sm->group->Counter + WPA_NONCE_LEN - 16, 16);
inc_byte_array(sm->group->Counter, WPA_NONCE_LEN);
os_memcpy(ek, key->key_iv, 16);
os_memcpy(ek + 16, sm->PTK.kek, 16);
os_memcpy(key + 1, buf, key_data_len);
rc4_skip(ek, 32, 256, (u8 *) (key + 1), key_data_len);
WPA_PUT_BE16(key->key_data_length, key_data_len);
}
os_free(buf);
}
if (key_info & WPA_KEY_INFO_MIC) {
if (!sm->PTK_valid) {
wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG,
"PTK not valid when sending EAPOL-Key "
"frame");
os_free(hdr);
return;
}
wpa_eapol_key_mic(sm->PTK.kck, version, (u8 *) hdr, len,
key->key_mic);
}
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_inc_EapolFramesTx,
1);
wpa_auth_send_eapol(wpa_auth, sm->addr, (u8 *) hdr, len,
sm->pairwise_set);
os_free(hdr);
}
static void wpa_send_eapol(struct wpa_authenticator *wpa_auth,
struct wpa_state_machine *sm, int key_info,
const u8 *key_rsc, const u8 *nonce,
const u8 *kde, size_t kde_len,
int keyidx, int encr)
{
int timeout_ms;
int pairwise = key_info & WPA_KEY_INFO_KEY_TYPE;
int ctr;
if (sm == NULL)
return;
__wpa_send_eapol(wpa_auth, sm, key_info, key_rsc, nonce, kde, kde_len,
keyidx, encr, 0);
ctr = pairwise ? sm->TimeoutCtr : sm->GTimeoutCtr;
if (ctr == 1)
timeout_ms = eapol_key_timeout_first;
else
timeout_ms = eapol_key_timeout_subseq;
eloop_register_timeout(timeout_ms / 1000, (timeout_ms % 1000) * 1000,
wpa_send_eapol_timeout, wpa_auth, sm);
}
static int wpa_verify_key_mic(struct wpa_ptk *PTK, u8 *data, size_t data_len)
{
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
u16 key_info;
int ret = 0;
u8 mic[16];
if (data_len < sizeof(*hdr) + sizeof(*key))
return -1;
hdr = (struct ieee802_1x_hdr *) data;
key = (struct wpa_eapol_key *) (hdr + 1);
key_info = WPA_GET_BE16(key->key_info);
os_memcpy(mic, key->key_mic, 16);
os_memset(key->key_mic, 0, 16);
if (wpa_eapol_key_mic(PTK->kck, key_info & WPA_KEY_INFO_TYPE_MASK,
data, data_len, key->key_mic) ||
os_memcmp(mic, key->key_mic, 16) != 0)
ret = -1;
os_memcpy(key->key_mic, mic, 16);
return ret;
}
void wpa_remove_ptk(struct wpa_state_machine *sm)
{
sm->PTK_valid = FALSE;
os_memset(&sm->PTK, 0, sizeof(sm->PTK));
wpa_auth_set_key(sm->wpa_auth, 0, WPA_ALG_NONE, sm->addr, 0, (u8 *) "",
0);
sm->pairwise_set = FALSE;
eloop_cancel_timeout(wpa_rekey_ptk, sm->wpa_auth, sm);
}
int wpa_auth_sm_event(struct wpa_state_machine *sm, wpa_event event)
{
int remove_ptk = 1;
if (sm == NULL)
return -1;
wpa_auth_vlogger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"event %d notification", event);
switch (event) {
case WPA_AUTH:
case WPA_ASSOC:
break;
case WPA_DEAUTH:
case WPA_DISASSOC:
sm->DeauthenticationRequest = TRUE;
break;
case WPA_REAUTH:
case WPA_REAUTH_EAPOL:
if (sm->GUpdateStationKeys) {
/*
* Reauthentication cancels the pending group key
* update for this STA.
*/
sm->group->GKeyDoneStations--;
sm->GUpdateStationKeys = FALSE;
sm->PtkGroupInit = TRUE;
}
sm->ReAuthenticationRequest = TRUE;
break;
case WPA_ASSOC_FT:
#ifdef CONFIG_IEEE80211R
/* Using FT protocol, not WPA auth state machine */
sm->ft_completed = 1;
return 0;
#else /* CONFIG_IEEE80211R */
break;
#endif /* CONFIG_IEEE80211R */
}
#ifdef CONFIG_IEEE80211R
sm->ft_completed = 0;
#endif /* CONFIG_IEEE80211R */
#ifdef CONFIG_IEEE80211W
if (sm->mgmt_frame_prot && event == WPA_AUTH)
remove_ptk = 0;
#endif /* CONFIG_IEEE80211W */
if (remove_ptk) {
sm->PTK_valid = FALSE;
os_memset(&sm->PTK, 0, sizeof(sm->PTK));
if (event != WPA_REAUTH_EAPOL)
wpa_remove_ptk(sm);
}
return wpa_sm_step(sm);
}
static enum wpa_alg wpa_alg_enum(int alg)
{
switch (alg) {
case WPA_CIPHER_CCMP:
return WPA_ALG_CCMP;
case WPA_CIPHER_TKIP:
return WPA_ALG_TKIP;
case WPA_CIPHER_WEP104:
case WPA_CIPHER_WEP40:
return WPA_ALG_WEP;
default:
return WPA_ALG_NONE;
}
}
SM_STATE(WPA_PTK, INITIALIZE)
{
SM_ENTRY_MA(WPA_PTK, INITIALIZE, wpa_ptk);
if (sm->Init) {
/* Init flag is not cleared here, so avoid busy
* loop by claiming nothing changed. */
sm->changed = FALSE;
}
sm->keycount = 0;
if (sm->GUpdateStationKeys)
sm->group->GKeyDoneStations--;
sm->GUpdateStationKeys = FALSE;
if (sm->wpa == WPA_VERSION_WPA)
sm->PInitAKeys = FALSE;
if (1 /* Unicast cipher supported AND (ESS OR ((IBSS or WDS) and
* Local AA > Remote AA)) */) {
sm->Pair = TRUE;
}
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portEnabled, 0);
wpa_remove_ptk(sm);
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portValid, 0);
sm->TimeoutCtr = 0;
if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt)) {
wpa_auth_set_eapol(sm->wpa_auth, sm->addr,
WPA_EAPOL_authorized, 0);
}
}
SM_STATE(WPA_PTK, DISCONNECT)
{
SM_ENTRY_MA(WPA_PTK, DISCONNECT, wpa_ptk);
sm->Disconnect = FALSE;
wpa_sta_disconnect(sm->wpa_auth, sm->addr);
}
SM_STATE(WPA_PTK, DISCONNECTED)
{
SM_ENTRY_MA(WPA_PTK, DISCONNECTED, wpa_ptk);
sm->DeauthenticationRequest = FALSE;
}
SM_STATE(WPA_PTK, AUTHENTICATION)
{
SM_ENTRY_MA(WPA_PTK, AUTHENTICATION, wpa_ptk);
os_memset(&sm->PTK, 0, sizeof(sm->PTK));
sm->PTK_valid = FALSE;
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portControl_Auto,
1);
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portEnabled, 1);
sm->AuthenticationRequest = FALSE;
}
SM_STATE(WPA_PTK, AUTHENTICATION2)
{
SM_ENTRY_MA(WPA_PTK, AUTHENTICATION2, wpa_ptk);
os_memcpy(sm->ANonce, sm->group->Counter, WPA_NONCE_LEN);
inc_byte_array(sm->group->Counter, WPA_NONCE_LEN);
sm->ReAuthenticationRequest = FALSE;
/* IEEE 802.11i does not clear TimeoutCtr here, but this is more
* logical place than INITIALIZE since AUTHENTICATION2 can be
* re-entered on ReAuthenticationRequest without going through
* INITIALIZE. */
sm->TimeoutCtr = 0;
}
SM_STATE(WPA_PTK, INITPMK)
{
u8 msk[2 * PMK_LEN];
size_t len = 2 * PMK_LEN;
SM_ENTRY_MA(WPA_PTK, INITPMK, wpa_ptk);
#ifdef CONFIG_IEEE80211R
sm->xxkey_len = 0;
#endif /* CONFIG_IEEE80211R */
if (sm->pmksa) {
wpa_printf(MSG_DEBUG, "WPA: PMK from PMKSA cache");
os_memcpy(sm->PMK, sm->pmksa->pmk, PMK_LEN);
} else if (wpa_auth_get_msk(sm->wpa_auth, sm->addr, msk, &len) == 0) {
wpa_printf(MSG_DEBUG, "WPA: PMK from EAPOL state machine "
"(len=%lu)", (unsigned long) len);
os_memcpy(sm->PMK, msk, PMK_LEN);
#ifdef CONFIG_IEEE80211R
if (len >= 2 * PMK_LEN) {
os_memcpy(sm->xxkey, msk + PMK_LEN, PMK_LEN);
sm->xxkey_len = PMK_LEN;
}
#endif /* CONFIG_IEEE80211R */
} else {
wpa_printf(MSG_DEBUG, "WPA: Could not get PMK");
}
sm->req_replay_counter_used = 0;
/* IEEE 802.11i does not set keyRun to FALSE, but not doing this
* will break reauthentication since EAPOL state machines may not be
* get into AUTHENTICATING state that clears keyRun before WPA state
* machine enters AUTHENTICATION2 state and goes immediately to INITPMK
* state and takes PMK from the previously used AAA Key. This will
* eventually fail in 4-Way Handshake because Supplicant uses PMK
* derived from the new AAA Key. Setting keyRun = FALSE here seems to
* be good workaround for this issue. */
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyRun, 0);
}
SM_STATE(WPA_PTK, INITPSK)
{
const u8 *psk;
SM_ENTRY_MA(WPA_PTK, INITPSK, wpa_ptk);
psk = wpa_auth_get_psk(sm->wpa_auth, sm->addr, NULL);
if (psk) {
os_memcpy(sm->PMK, psk, PMK_LEN);
#ifdef CONFIG_IEEE80211R
os_memcpy(sm->xxkey, psk, PMK_LEN);
sm->xxkey_len = PMK_LEN;
#endif /* CONFIG_IEEE80211R */
}
sm->req_replay_counter_used = 0;
}
SM_STATE(WPA_PTK, PTKSTART)
{
u8 buf[2 + RSN_SELECTOR_LEN + PMKID_LEN], *pmkid = NULL;
size_t pmkid_len = 0;
SM_ENTRY_MA(WPA_PTK, PTKSTART, wpa_ptk);
sm->PTKRequest = FALSE;
sm->TimeoutEvt = FALSE;
sm->TimeoutCtr++;
if (sm->TimeoutCtr > (int) dot11RSNAConfigPairwiseUpdateCount) {
/* No point in sending the EAPOL-Key - we will disconnect
* immediately following this. */
return;
}
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"sending 1/4 msg of 4-Way Handshake");
/*
* TODO: Could add PMKID even with WPA2-PSK, but only if there is only
* one possible PSK for this STA.
*/
if (sm->wpa == WPA_VERSION_WPA2 &&
wpa_key_mgmt_wpa_ieee8021x(sm->wpa_key_mgmt)) {
pmkid = buf;
pmkid_len = 2 + RSN_SELECTOR_LEN + PMKID_LEN;
pmkid[0] = WLAN_EID_VENDOR_SPECIFIC;
pmkid[1] = RSN_SELECTOR_LEN + PMKID_LEN;
RSN_SELECTOR_PUT(&pmkid[2], RSN_KEY_DATA_PMKID);
if (sm->pmksa)
os_memcpy(&pmkid[2 + RSN_SELECTOR_LEN],
sm->pmksa->pmkid, PMKID_LEN);
else {
/*
* Calculate PMKID since no PMKSA cache entry was
* available with pre-calculated PMKID.
*/
rsn_pmkid(sm->PMK, PMK_LEN, sm->wpa_auth->addr,
sm->addr, &pmkid[2 + RSN_SELECTOR_LEN],
wpa_key_mgmt_sha256(sm->wpa_key_mgmt));
}
}
wpa_send_eapol(sm->wpa_auth, sm,
WPA_KEY_INFO_ACK | WPA_KEY_INFO_KEY_TYPE, NULL,
sm->ANonce, pmkid, pmkid_len, 0, 0);
}
static int wpa_derive_ptk(struct wpa_state_machine *sm, const u8 *pmk,
struct wpa_ptk *ptk)
{
size_t ptk_len = sm->pairwise == WPA_CIPHER_CCMP ? 48 : 64;
#ifdef CONFIG_IEEE80211R
if (wpa_key_mgmt_ft(sm->wpa_key_mgmt))
return wpa_auth_derive_ptk_ft(sm, pmk, ptk, ptk_len);
#endif /* CONFIG_IEEE80211R */
wpa_pmk_to_ptk(pmk, PMK_LEN, "Pairwise key expansion",
sm->wpa_auth->addr, sm->addr, sm->ANonce, sm->SNonce,
(u8 *) ptk, ptk_len,
wpa_key_mgmt_sha256(sm->wpa_key_mgmt));
return 0;
}
SM_STATE(WPA_PTK, PTKCALCNEGOTIATING)
{
struct wpa_ptk PTK;
int ok = 0;
const u8 *pmk = NULL;
SM_ENTRY_MA(WPA_PTK, PTKCALCNEGOTIATING, wpa_ptk);
sm->EAPOLKeyReceived = FALSE;
/* WPA with IEEE 802.1X: use the derived PMK from EAP
* WPA-PSK: iterate through possible PSKs and select the one matching
* the packet */
for (;;) {
if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt)) {
pmk = wpa_auth_get_psk(sm->wpa_auth, sm->addr, pmk);
if (pmk == NULL)
break;
} else
pmk = sm->PMK;
wpa_derive_ptk(sm, pmk, &PTK);
if (wpa_verify_key_mic(&PTK, sm->last_rx_eapol_key,
sm->last_rx_eapol_key_len) == 0) {
ok = 1;
break;
}
if (!wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt))
break;
}
if (!ok) {
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"invalid MIC in msg 2/4 of 4-Way Handshake");
return;
}
eloop_cancel_timeout(wpa_send_eapol_timeout, sm->wpa_auth, sm);
if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt)) {
/* PSK may have changed from the previous choice, so update
* state machine data based on whatever PSK was selected here.
*/
os_memcpy(sm->PMK, pmk, PMK_LEN);
}
sm->MICVerified = TRUE;
os_memcpy(&sm->PTK, &PTK, sizeof(PTK));
sm->PTK_valid = TRUE;
}
SM_STATE(WPA_PTK, PTKCALCNEGOTIATING2)
{
SM_ENTRY_MA(WPA_PTK, PTKCALCNEGOTIATING2, wpa_ptk);
sm->TimeoutCtr = 0;
}
#ifdef CONFIG_IEEE80211W
static int ieee80211w_kde_len(struct wpa_state_machine *sm)
{
if (sm->mgmt_frame_prot) {
return 2 + RSN_SELECTOR_LEN + sizeof(struct wpa_igtk_kde);
}
return 0;
}
static u8 * ieee80211w_kde_add(struct wpa_state_machine *sm, u8 *pos)
{
struct wpa_igtk_kde igtk;
struct wpa_group *gsm = sm->group;
if (!sm->mgmt_frame_prot)
return pos;
igtk.keyid[0] = gsm->GN_igtk;
igtk.keyid[1] = 0;
if (wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN_igtk, igtk.pn) < 0)
os_memset(igtk.pn, 0, sizeof(igtk.pn));
os_memcpy(igtk.igtk, gsm->IGTK[gsm->GN_igtk - 4], WPA_IGTK_LEN);
pos = wpa_add_kde(pos, RSN_KEY_DATA_IGTK,
(const u8 *) &igtk, sizeof(igtk), NULL, 0);
return pos;
}
#else /* CONFIG_IEEE80211W */
static int ieee80211w_kde_len(struct wpa_state_machine *sm)
{
return 0;
}
static u8 * ieee80211w_kde_add(struct wpa_state_machine *sm, u8 *pos)
{
return pos;
}
#endif /* CONFIG_IEEE80211W */
SM_STATE(WPA_PTK, PTKINITNEGOTIATING)
{
u8 rsc[WPA_KEY_RSC_LEN], *_rsc, *gtk, *kde, *pos;
size_t gtk_len, kde_len;
struct wpa_group *gsm = sm->group;
u8 *wpa_ie;
int wpa_ie_len, secure, keyidx, encr = 0;
SM_ENTRY_MA(WPA_PTK, PTKINITNEGOTIATING, wpa_ptk);
sm->TimeoutEvt = FALSE;
sm->TimeoutCtr++;
if (sm->TimeoutCtr > (int) dot11RSNAConfigPairwiseUpdateCount) {
/* No point in sending the EAPOL-Key - we will disconnect
* immediately following this. */
return;
}
/* Send EAPOL(1, 1, 1, Pair, P, RSC, ANonce, MIC(PTK), RSNIE, GTK[GN])
*/
os_memset(rsc, 0, WPA_KEY_RSC_LEN);
wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, rsc);
wpa_ie = sm->wpa_auth->wpa_ie;
wpa_ie_len = sm->wpa_auth->wpa_ie_len;
if (sm->wpa == WPA_VERSION_WPA &&
(sm->wpa_auth->conf.wpa & WPA_PROTO_RSN) &&
wpa_ie_len > wpa_ie[1] + 2 && wpa_ie[0] == WLAN_EID_RSN) {
/* WPA-only STA, remove RSN IE */
wpa_ie = wpa_ie + wpa_ie[1] + 2;
wpa_ie_len = wpa_ie[1] + 2;
}
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"sending 3/4 msg of 4-Way Handshake");
if (sm->wpa == WPA_VERSION_WPA2) {
/* WPA2 send GTK in the 4-way handshake */
secure = 1;
gtk = gsm->GTK[gsm->GN - 1];
gtk_len = gsm->GTK_len;
keyidx = gsm->GN;
_rsc = rsc;
encr = 1;
} else {
/* WPA does not include GTK in msg 3/4 */
secure = 0;
gtk = NULL;
gtk_len = 0;
keyidx = 0;
_rsc = NULL;
}
kde_len = wpa_ie_len + ieee80211w_kde_len(sm);
if (gtk)
kde_len += 2 + RSN_SELECTOR_LEN + 2 + gtk_len;
kde = os_malloc(kde_len);
if (kde == NULL)
return;
pos = kde;
os_memcpy(pos, wpa_ie, wpa_ie_len);
pos += wpa_ie_len;
if (gtk) {
u8 hdr[2];
hdr[0] = keyidx & 0x03;
hdr[1] = 0;
pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2,
gtk, gtk_len);
}
pos = ieee80211w_kde_add(sm, pos);
wpa_send_eapol(sm->wpa_auth, sm,
(secure ? WPA_KEY_INFO_SECURE : 0) | WPA_KEY_INFO_MIC |
WPA_KEY_INFO_ACK | WPA_KEY_INFO_INSTALL |
WPA_KEY_INFO_KEY_TYPE,
_rsc, sm->ANonce, kde, pos - kde, keyidx, encr);
os_free(kde);
}
SM_STATE(WPA_PTK, PTKINITDONE)
{
SM_ENTRY_MA(WPA_PTK, PTKINITDONE, wpa_ptk);
sm->EAPOLKeyReceived = FALSE;
if (sm->Pair) {
enum wpa_alg alg;
int klen;
if (sm->pairwise == WPA_CIPHER_TKIP) {
alg = WPA_ALG_TKIP;
klen = 32;
} else {
alg = WPA_ALG_CCMP;
klen = 16;
}
if (wpa_auth_set_key(sm->wpa_auth, 0, alg, sm->addr, 0,
sm->PTK.tk1, klen)) {
wpa_sta_disconnect(sm->wpa_auth, sm->addr);
return;
}
/* FIX: MLME-SetProtection.Request(TA, Tx_Rx) */
sm->pairwise_set = TRUE;
if (sm->wpa_auth->conf.wpa_ptk_rekey) {
eloop_cancel_timeout(wpa_rekey_ptk, sm->wpa_auth, sm);
eloop_register_timeout(sm->wpa_auth->conf.
wpa_ptk_rekey, 0, wpa_rekey_ptk,
sm->wpa_auth, sm);
}
if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt)) {
wpa_auth_set_eapol(sm->wpa_auth, sm->addr,
WPA_EAPOL_authorized, 1);
}
}
if (0 /* IBSS == TRUE */) {
sm->keycount++;
if (sm->keycount == 2) {
wpa_auth_set_eapol(sm->wpa_auth, sm->addr,
WPA_EAPOL_portValid, 1);
}
} else {
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portValid,
1);
}
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyAvailable, 0);
wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyDone, 1);
if (sm->wpa == WPA_VERSION_WPA)
sm->PInitAKeys = TRUE;
else
sm->has_GTK = TRUE;
wpa_auth_vlogger(sm->wpa_auth, sm->addr, LOGGER_INFO,
"pairwise key handshake completed (%s)",
sm->wpa == WPA_VERSION_WPA ? "WPA" : "RSN");
#ifdef CONFIG_IEEE80211R
wpa_ft_push_pmk_r1(sm->wpa_auth, sm->addr);
#endif /* CONFIG_IEEE80211R */
}
SM_STEP(WPA_PTK)
{
struct wpa_authenticator *wpa_auth = sm->wpa_auth;
if (sm->Init)
SM_ENTER(WPA_PTK, INITIALIZE);
else if (sm->Disconnect
/* || FIX: dot11RSNAConfigSALifetime timeout */)
SM_ENTER(WPA_PTK, DISCONNECT);
else if (sm->DeauthenticationRequest)
SM_ENTER(WPA_PTK, DISCONNECTED);
else if (sm->AuthenticationRequest)
SM_ENTER(WPA_PTK, AUTHENTICATION);
else if (sm->ReAuthenticationRequest)
SM_ENTER(WPA_PTK, AUTHENTICATION2);
else if (sm->PTKRequest)
SM_ENTER(WPA_PTK, PTKSTART);
else switch (sm->wpa_ptk_state) {
case WPA_PTK_INITIALIZE:
break;
case WPA_PTK_DISCONNECT:
SM_ENTER(WPA_PTK, DISCONNECTED);
break;
case WPA_PTK_DISCONNECTED:
SM_ENTER(WPA_PTK, INITIALIZE);
break;
case WPA_PTK_AUTHENTICATION:
SM_ENTER(WPA_PTK, AUTHENTICATION2);
break;
case WPA_PTK_AUTHENTICATION2:
if (wpa_key_mgmt_wpa_ieee8021x(sm->wpa_key_mgmt) &&
wpa_auth_get_eapol(sm->wpa_auth, sm->addr,
WPA_EAPOL_keyRun) > 0)
SM_ENTER(WPA_PTK, INITPMK);
else if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt)
/* FIX: && 802.1X::keyRun */)
SM_ENTER(WPA_PTK, INITPSK);
break;
case WPA_PTK_INITPMK:
if (wpa_auth_get_eapol(sm->wpa_auth, sm->addr,
WPA_EAPOL_keyAvailable) > 0)
SM_ENTER(WPA_PTK, PTKSTART);
else {
wpa_auth->dot11RSNA4WayHandshakeFailures++;
SM_ENTER(WPA_PTK, DISCONNECT);
}
break;
case WPA_PTK_INITPSK:
if (wpa_auth_get_psk(sm->wpa_auth, sm->addr, NULL))
SM_ENTER(WPA_PTK, PTKSTART);
else {
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_INFO,
"no PSK configured for the STA");
wpa_auth->dot11RSNA4WayHandshakeFailures++;
SM_ENTER(WPA_PTK, DISCONNECT);
}
break;
case WPA_PTK_PTKSTART:
if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest &&
sm->EAPOLKeyPairwise)
SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING);
else if (sm->TimeoutCtr >
(int) dot11RSNAConfigPairwiseUpdateCount) {
wpa_auth->dot11RSNA4WayHandshakeFailures++;
SM_ENTER(WPA_PTK, DISCONNECT);
} else if (sm->TimeoutEvt)
SM_ENTER(WPA_PTK, PTKSTART);
break;
case WPA_PTK_PTKCALCNEGOTIATING:
if (sm->MICVerified)
SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING2);
else if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest &&
sm->EAPOLKeyPairwise)
SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING);
else if (sm->TimeoutEvt)
SM_ENTER(WPA_PTK, PTKSTART);
break;
case WPA_PTK_PTKCALCNEGOTIATING2:
SM_ENTER(WPA_PTK, PTKINITNEGOTIATING);
break;
case WPA_PTK_PTKINITNEGOTIATING:
if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest &&
sm->EAPOLKeyPairwise && sm->MICVerified)
SM_ENTER(WPA_PTK, PTKINITDONE);
else if (sm->TimeoutCtr >
(int) dot11RSNAConfigPairwiseUpdateCount) {
wpa_auth->dot11RSNA4WayHandshakeFailures++;
SM_ENTER(WPA_PTK, DISCONNECT);
} else if (sm->TimeoutEvt)
SM_ENTER(WPA_PTK, PTKINITNEGOTIATING);
break;
case WPA_PTK_PTKINITDONE:
break;
}
}
SM_STATE(WPA_PTK_GROUP, IDLE)
{
SM_ENTRY_MA(WPA_PTK_GROUP, IDLE, wpa_ptk_group);
if (sm->Init) {
/* Init flag is not cleared here, so avoid busy
* loop by claiming nothing changed. */
sm->changed = FALSE;
}
sm->GTimeoutCtr = 0;
}
SM_STATE(WPA_PTK_GROUP, REKEYNEGOTIATING)
{
u8 rsc[WPA_KEY_RSC_LEN];
struct wpa_group *gsm = sm->group;
u8 *kde, *pos, hdr[2];
size_t kde_len;
SM_ENTRY_MA(WPA_PTK_GROUP, REKEYNEGOTIATING, wpa_ptk_group);
sm->GTimeoutCtr++;
if (sm->GTimeoutCtr > (int) dot11RSNAConfigGroupUpdateCount) {
/* No point in sending the EAPOL-Key - we will disconnect
* immediately following this. */
return;
}
if (sm->wpa == WPA_VERSION_WPA)
sm->PInitAKeys = FALSE;
sm->TimeoutEvt = FALSE;
/* Send EAPOL(1, 1, 1, !Pair, G, RSC, GNonce, MIC(PTK), GTK[GN]) */
os_memset(rsc, 0, WPA_KEY_RSC_LEN);
if (gsm->wpa_group_state == WPA_GROUP_SETKEYSDONE)
wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, rsc);
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"sending 1/2 msg of Group Key Handshake");
if (sm->wpa == WPA_VERSION_WPA2) {
kde_len = 2 + RSN_SELECTOR_LEN + 2 + gsm->GTK_len +
ieee80211w_kde_len(sm);
kde = os_malloc(kde_len);
if (kde == NULL)
return;
pos = kde;
hdr[0] = gsm->GN & 0x03;
hdr[1] = 0;
pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2,
gsm->GTK[gsm->GN - 1], gsm->GTK_len);
pos = ieee80211w_kde_add(sm, pos);
} else {
kde = gsm->GTK[gsm->GN - 1];
pos = kde + gsm->GTK_len;
}
wpa_send_eapol(sm->wpa_auth, sm,
WPA_KEY_INFO_SECURE | WPA_KEY_INFO_MIC |
WPA_KEY_INFO_ACK |
(!sm->Pair ? WPA_KEY_INFO_INSTALL : 0),
rsc, gsm->GNonce, kde, pos - kde, gsm->GN, 1);
if (sm->wpa == WPA_VERSION_WPA2)
os_free(kde);
}
SM_STATE(WPA_PTK_GROUP, REKEYESTABLISHED)
{
SM_ENTRY_MA(WPA_PTK_GROUP, REKEYESTABLISHED, wpa_ptk_group);
sm->EAPOLKeyReceived = FALSE;
if (sm->GUpdateStationKeys)
sm->group->GKeyDoneStations--;
sm->GUpdateStationKeys = FALSE;
sm->GTimeoutCtr = 0;
/* FIX: MLME.SetProtection.Request(TA, Tx_Rx) */
wpa_auth_vlogger(sm->wpa_auth, sm->addr, LOGGER_INFO,
"group key handshake completed (%s)",
sm->wpa == WPA_VERSION_WPA ? "WPA" : "RSN");
sm->has_GTK = TRUE;
}
SM_STATE(WPA_PTK_GROUP, KEYERROR)
{
SM_ENTRY_MA(WPA_PTK_GROUP, KEYERROR, wpa_ptk_group);
if (sm->GUpdateStationKeys)
sm->group->GKeyDoneStations--;
sm->GUpdateStationKeys = FALSE;
sm->Disconnect = TRUE;
}
SM_STEP(WPA_PTK_GROUP)
{
if (sm->Init || sm->PtkGroupInit) {
SM_ENTER(WPA_PTK_GROUP, IDLE);
sm->PtkGroupInit = FALSE;
} else switch (sm->wpa_ptk_group_state) {
case WPA_PTK_GROUP_IDLE:
if (sm->GUpdateStationKeys ||
(sm->wpa == WPA_VERSION_WPA && sm->PInitAKeys))
SM_ENTER(WPA_PTK_GROUP, REKEYNEGOTIATING);
break;
case WPA_PTK_GROUP_REKEYNEGOTIATING:
if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest &&
!sm->EAPOLKeyPairwise && sm->MICVerified)
SM_ENTER(WPA_PTK_GROUP, REKEYESTABLISHED);
else if (sm->GTimeoutCtr >
(int) dot11RSNAConfigGroupUpdateCount)
SM_ENTER(WPA_PTK_GROUP, KEYERROR);
else if (sm->TimeoutEvt)
SM_ENTER(WPA_PTK_GROUP, REKEYNEGOTIATING);
break;
case WPA_PTK_GROUP_KEYERROR:
SM_ENTER(WPA_PTK_GROUP, IDLE);
break;
case WPA_PTK_GROUP_REKEYESTABLISHED:
SM_ENTER(WPA_PTK_GROUP, IDLE);
break;
}
}
static int wpa_gtk_update(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
int ret = 0;
/* FIX: is this the correct way of getting GNonce? */
os_memcpy(group->GNonce, group->Counter, WPA_NONCE_LEN);
inc_byte_array(group->Counter, WPA_NONCE_LEN);
wpa_gmk_to_gtk(group->GMK, wpa_auth->addr, group->GNonce,
group->GTK[group->GN - 1], group->GTK_len);
#ifdef CONFIG_IEEE80211W
if (wpa_auth->conf.ieee80211w != NO_MGMT_FRAME_PROTECTION) {
if (os_get_random(group->IGTK[group->GN_igtk - 4],
WPA_IGTK_LEN) < 0) {
wpa_printf(MSG_INFO, "RSN: Failed to get new random "
"IGTK");
ret = -1;
}
wpa_hexdump_key(MSG_DEBUG, "IGTK",
group->IGTK[group->GN_igtk - 4], WPA_IGTK_LEN);
}
#endif /* CONFIG_IEEE80211W */
return ret;
}
static void wpa_group_gtk_init(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
wpa_printf(MSG_DEBUG, "WPA: group state machine entering state "
"GTK_INIT (VLAN-ID %d)", group->vlan_id);
group->changed = FALSE; /* GInit is not cleared here; avoid loop */
group->wpa_group_state = WPA_GROUP_GTK_INIT;
/* GTK[0..N] = 0 */
os_memset(group->GTK, 0, sizeof(group->GTK));
group->GN = 1;
group->GM = 2;
#ifdef CONFIG_IEEE80211W
group->GN_igtk = 4;
group->GM_igtk = 5;
#endif /* CONFIG_IEEE80211W */
/* GTK[GN] = CalcGTK() */
wpa_gtk_update(wpa_auth, group);
}
static int wpa_group_update_sta(struct wpa_state_machine *sm, void *ctx)
{
if (sm->wpa_ptk_state != WPA_PTK_PTKINITDONE) {
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"Not in PTKINITDONE; skip Group Key update");
return 0;
}
if (sm->GUpdateStationKeys) {
/*
* This should not really happen, but just in case, make sure
* we do not count the same STA twice in GKeyDoneStations.
*/
wpa_auth_logger(sm->wpa_auth, sm->addr, LOGGER_DEBUG,
"GUpdateStationKeys already set - do not "
"increment GKeyDoneStations");
} else {
sm->group->GKeyDoneStations++;
sm->GUpdateStationKeys = TRUE;
}
wpa_sm_step(sm);
return 0;
}
static void wpa_group_setkeys(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
int tmp;
wpa_printf(MSG_DEBUG, "WPA: group state machine entering state "
"SETKEYS (VLAN-ID %d)", group->vlan_id);
group->changed = TRUE;
group->wpa_group_state = WPA_GROUP_SETKEYS;
group->GTKReKey = FALSE;
tmp = group->GM;
group->GM = group->GN;
group->GN = tmp;
#ifdef CONFIG_IEEE80211W
tmp = group->GM_igtk;
group->GM_igtk = group->GN_igtk;
group->GN_igtk = tmp;
#endif /* CONFIG_IEEE80211W */
/* "GKeyDoneStations = GNoStations" is done in more robust way by
* counting the STAs that are marked with GUpdateStationKeys instead of
* including all STAs that could be in not-yet-completed state. */
wpa_gtk_update(wpa_auth, group);
wpa_auth_for_each_sta(wpa_auth, wpa_group_update_sta, NULL);
wpa_printf(MSG_DEBUG, "wpa_group_setkeys: GKeyDoneStations=%d",
group->GKeyDoneStations);
}
static void wpa_group_setkeysdone(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
wpa_printf(MSG_DEBUG, "WPA: group state machine entering state "
"SETKEYSDONE (VLAN-ID %d)", group->vlan_id);
group->changed = TRUE;
group->wpa_group_state = WPA_GROUP_SETKEYSDONE;
wpa_auth_set_key(wpa_auth, group->vlan_id,
wpa_alg_enum(wpa_auth->conf.wpa_group),
NULL, group->GN, group->GTK[group->GN - 1],
group->GTK_len);
#ifdef CONFIG_IEEE80211W
if (wpa_auth->conf.ieee80211w != NO_MGMT_FRAME_PROTECTION) {
wpa_auth_set_key(wpa_auth, group->vlan_id, WPA_ALG_IGTK,
NULL, group->GN_igtk,
group->IGTK[group->GN_igtk - 4],
WPA_IGTK_LEN);
}
#endif /* CONFIG_IEEE80211W */
}
static void wpa_group_sm_step(struct wpa_authenticator *wpa_auth,
struct wpa_group *group)
{
if (group->GInit) {
wpa_group_gtk_init(wpa_auth, group);
} else if (group->wpa_group_state == WPA_GROUP_GTK_INIT &&
group->GTKAuthenticator) {
wpa_group_setkeysdone(wpa_auth, group);
} else if (group->wpa_group_state == WPA_GROUP_SETKEYSDONE &&
group->GTKReKey) {
wpa_group_setkeys(wpa_auth, group);
} else if (group->wpa_group_state == WPA_GROUP_SETKEYS) {
if (group->GKeyDoneStations == 0)
wpa_group_setkeysdone(wpa_auth, group);
else if (group->GTKReKey)
wpa_group_setkeys(wpa_auth, group);
}
}
static int wpa_sm_step(struct wpa_state_machine *sm)
{
if (sm == NULL)
return 0;
if (sm->in_step_loop) {
/* This should not happen, but if it does, make sure we do not
* end up freeing the state machine too early by exiting the
* recursive call. */
wpa_printf(MSG_ERROR, "WPA: wpa_sm_step() called recursively");
return 0;
}
sm->in_step_loop = 1;
do {
if (sm->pending_deinit)
break;
sm->changed = FALSE;
sm->wpa_auth->group->changed = FALSE;
SM_STEP_RUN(WPA_PTK);
if (sm->pending_deinit)
break;
SM_STEP_RUN(WPA_PTK_GROUP);
if (sm->pending_deinit)
break;
wpa_group_sm_step(sm->wpa_auth, sm->group);
} while (sm->changed || sm->wpa_auth->group->changed);
sm->in_step_loop = 0;
if (sm->pending_deinit) {
wpa_printf(MSG_DEBUG, "WPA: Completing pending STA state "
"machine deinit for " MACSTR, MAC2STR(sm->addr));
wpa_free_sta_sm(sm);
return 1;
}
return 0;
}
static void wpa_sm_call_step(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_state_machine *sm = eloop_ctx;
wpa_sm_step(sm);
}
void wpa_auth_sm_notify(struct wpa_state_machine *sm)
{
if (sm == NULL)
return;
eloop_register_timeout(0, 0, wpa_sm_call_step, sm, NULL);
}
void wpa_gtk_rekey(struct wpa_authenticator *wpa_auth)
{
int tmp, i;
struct wpa_group *group;
if (wpa_auth == NULL)
return;
group = wpa_auth->group;
for (i = 0; i < 2; i++) {
tmp = group->GM;
group->GM = group->GN;
group->GN = tmp;
#ifdef CONFIG_IEEE80211W
tmp = group->GM_igtk;
group->GM_igtk = group->GN_igtk;
group->GN_igtk = tmp;
#endif /* CONFIG_IEEE80211W */
wpa_gtk_update(wpa_auth, group);
}
}
static const char * wpa_bool_txt(int bool)
{
return bool ? "TRUE" : "FALSE";
}
static int wpa_cipher_bits(int cipher)
{
switch (cipher) {
case WPA_CIPHER_CCMP:
return 128;
case WPA_CIPHER_TKIP:
return 256;
case WPA_CIPHER_WEP104:
return 104;
case WPA_CIPHER_WEP40:
return 40;
default:
return 0;
}
}
#define RSN_SUITE "%02x-%02x-%02x-%d"
#define RSN_SUITE_ARG(s) \
((s) >> 24) & 0xff, ((s) >> 16) & 0xff, ((s) >> 8) & 0xff, (s) & 0xff
int wpa_get_mib(struct wpa_authenticator *wpa_auth, char *buf, size_t buflen)
{
int len = 0, ret;
char pmkid_txt[PMKID_LEN * 2 + 1];
if (wpa_auth == NULL)
return len;
ret = os_snprintf(buf + len, buflen - len,
"dot11RSNAOptionImplemented=TRUE\n"
#ifdef CONFIG_RSN_PREAUTH
"dot11RSNAPreauthenticationImplemented=TRUE\n"
#else /* CONFIG_RSN_PREAUTH */
"dot11RSNAPreauthenticationImplemented=FALSE\n"
#endif /* CONFIG_RSN_PREAUTH */
"dot11RSNAEnabled=%s\n"
"dot11RSNAPreauthenticationEnabled=%s\n",
wpa_bool_txt(wpa_auth->conf.wpa & WPA_PROTO_RSN),
wpa_bool_txt(wpa_auth->conf.rsn_preauth));
if (ret < 0 || (size_t) ret >= buflen - len)
return len;
len += ret;
wpa_snprintf_hex(pmkid_txt, sizeof(pmkid_txt),
wpa_auth->dot11RSNAPMKIDUsed, PMKID_LEN);
ret = os_snprintf(
buf + len, buflen - len,
"dot11RSNAConfigVersion=%u\n"
"dot11RSNAConfigPairwiseKeysSupported=9999\n"
/* FIX: dot11RSNAConfigGroupCipher */
/* FIX: dot11RSNAConfigGroupRekeyMethod */
/* FIX: dot11RSNAConfigGroupRekeyTime */
/* FIX: dot11RSNAConfigGroupRekeyPackets */
"dot11RSNAConfigGroupRekeyStrict=%u\n"
"dot11RSNAConfigGroupUpdateCount=%u\n"
"dot11RSNAConfigPairwiseUpdateCount=%u\n"
"dot11RSNAConfigGroupCipherSize=%u\n"
"dot11RSNAConfigPMKLifetime=%u\n"
"dot11RSNAConfigPMKReauthThreshold=%u\n"
"dot11RSNAConfigNumberOfPTKSAReplayCounters=0\n"
"dot11RSNAConfigSATimeout=%u\n"
"dot11RSNAAuthenticationSuiteSelected=" RSN_SUITE "\n"
"dot11RSNAPairwiseCipherSelected=" RSN_SUITE "\n"
"dot11RSNAGroupCipherSelected=" RSN_SUITE "\n"
"dot11RSNAPMKIDUsed=%s\n"
"dot11RSNAAuthenticationSuiteRequested=" RSN_SUITE "\n"
"dot11RSNAPairwiseCipherRequested=" RSN_SUITE "\n"
"dot11RSNAGroupCipherRequested=" RSN_SUITE "\n"
"dot11RSNATKIPCounterMeasuresInvoked=%u\n"
"dot11RSNA4WayHandshakeFailures=%u\n"
"dot11RSNAConfigNumberOfGTKSAReplayCounters=0\n",
RSN_VERSION,
!!wpa_auth->conf.wpa_strict_rekey,
dot11RSNAConfigGroupUpdateCount,
dot11RSNAConfigPairwiseUpdateCount,
wpa_cipher_bits(wpa_auth->conf.wpa_group),
dot11RSNAConfigPMKLifetime,
dot11RSNAConfigPMKReauthThreshold,
dot11RSNAConfigSATimeout,
RSN_SUITE_ARG(wpa_auth->dot11RSNAAuthenticationSuiteSelected),
RSN_SUITE_ARG(wpa_auth->dot11RSNAPairwiseCipherSelected),
RSN_SUITE_ARG(wpa_auth->dot11RSNAGroupCipherSelected),
pmkid_txt,
RSN_SUITE_ARG(wpa_auth->dot11RSNAAuthenticationSuiteRequested),
RSN_SUITE_ARG(wpa_auth->dot11RSNAPairwiseCipherRequested),
RSN_SUITE_ARG(wpa_auth->dot11RSNAGroupCipherRequested),
wpa_auth->dot11RSNATKIPCounterMeasuresInvoked,
wpa_auth->dot11RSNA4WayHandshakeFailures);
if (ret < 0 || (size_t) ret >= buflen - len)
return len;
len += ret;
/* TODO: dot11RSNAConfigPairwiseCiphersTable */
/* TODO: dot11RSNAConfigAuthenticationSuitesTable */
/* Private MIB */
ret = os_snprintf(buf + len, buflen - len, "hostapdWPAGroupState=%d\n",
wpa_auth->group->wpa_group_state);
if (ret < 0 || (size_t) ret >= buflen - len)
return len;
len += ret;
return len;
}
int wpa_get_mib_sta(struct wpa_state_machine *sm, char *buf, size_t buflen)
{
int len = 0, ret;
u32 pairwise = 0;
if (sm == NULL)
return 0;
/* TODO: FF-FF-FF-FF-FF-FF entry for broadcast/multicast stats */
/* dot11RSNAStatsEntry */
if (sm->wpa == WPA_VERSION_WPA) {
if (sm->pairwise == WPA_CIPHER_CCMP)
pairwise = WPA_CIPHER_SUITE_CCMP;
else if (sm->pairwise == WPA_CIPHER_TKIP)
pairwise = WPA_CIPHER_SUITE_TKIP;
else if (sm->pairwise == WPA_CIPHER_WEP104)
pairwise = WPA_CIPHER_SUITE_WEP104;
else if (sm->pairwise == WPA_CIPHER_WEP40)
pairwise = WPA_CIPHER_SUITE_WEP40;
else if (sm->pairwise == WPA_CIPHER_NONE)
pairwise = WPA_CIPHER_SUITE_NONE;
} else if (sm->wpa == WPA_VERSION_WPA2) {
if (sm->pairwise == WPA_CIPHER_CCMP)
pairwise = RSN_CIPHER_SUITE_CCMP;
else if (sm->pairwise == WPA_CIPHER_TKIP)
pairwise = RSN_CIPHER_SUITE_TKIP;
else if (sm->pairwise == WPA_CIPHER_WEP104)
pairwise = RSN_CIPHER_SUITE_WEP104;
else if (sm->pairwise == WPA_CIPHER_WEP40)
pairwise = RSN_CIPHER_SUITE_WEP40;
else if (sm->pairwise == WPA_CIPHER_NONE)
pairwise = RSN_CIPHER_SUITE_NONE;
} else
return 0;
ret = os_snprintf(
buf + len, buflen - len,
/* TODO: dot11RSNAStatsIndex */
"dot11RSNAStatsSTAAddress=" MACSTR "\n"
"dot11RSNAStatsVersion=1\n"
"dot11RSNAStatsSelectedPairwiseCipher=" RSN_SUITE "\n"
/* TODO: dot11RSNAStatsTKIPICVErrors */
"dot11RSNAStatsTKIPLocalMICFailures=%u\n"
"dot11RSNAStatsTKIPRemoveMICFailures=%u\n"
/* TODO: dot11RSNAStatsCCMPReplays */
/* TODO: dot11RSNAStatsCCMPDecryptErrors */
/* TODO: dot11RSNAStatsTKIPReplays */,
MAC2STR(sm->addr),
RSN_SUITE_ARG(pairwise),
sm->dot11RSNAStatsTKIPLocalMICFailures,
sm->dot11RSNAStatsTKIPRemoteMICFailures);
if (ret < 0 || (size_t) ret >= buflen - len)
return len;
len += ret;
/* Private MIB */
ret = os_snprintf(buf + len, buflen - len,
"hostapdWPAPTKState=%d\n"
"hostapdWPAPTKGroupState=%d\n",
sm->wpa_ptk_state,
sm->wpa_ptk_group_state);
if (ret < 0 || (size_t) ret >= buflen - len)
return len;
len += ret;
return len;
}
void wpa_auth_countermeasures_start(struct wpa_authenticator *wpa_auth)
{
if (wpa_auth)
wpa_auth->dot11RSNATKIPCounterMeasuresInvoked++;
}
int wpa_auth_pairwise_set(struct wpa_state_machine *sm)
{
return sm && sm->pairwise_set;
}
int wpa_auth_get_pairwise(struct wpa_state_machine *sm)
{
return sm->pairwise;
}
int wpa_auth_sta_key_mgmt(struct wpa_state_machine *sm)
{
if (sm == NULL)
return -1;
return sm->wpa_key_mgmt;
}
int wpa_auth_sta_wpa_version(struct wpa_state_machine *sm)
{
if (sm == NULL)
return 0;
return sm->wpa;
}
int wpa_auth_sta_clear_pmksa(struct wpa_state_machine *sm,
struct rsn_pmksa_cache_entry *entry)
{
if (sm == NULL || sm->pmksa != entry)
return -1;
sm->pmksa = NULL;
return 0;
}
struct rsn_pmksa_cache_entry *
wpa_auth_sta_get_pmksa(struct wpa_state_machine *sm)
{
return sm ? sm->pmksa : NULL;
}
void wpa_auth_sta_local_mic_failure_report(struct wpa_state_machine *sm)
{
if (sm)
sm->dot11RSNAStatsTKIPLocalMICFailures++;
}
const u8 * wpa_auth_get_wpa_ie(struct wpa_authenticator *wpa_auth, size_t *len)
{
if (wpa_auth == NULL)
return NULL;
*len = wpa_auth->wpa_ie_len;
return wpa_auth->wpa_ie;
}
int wpa_auth_pmksa_add(struct wpa_state_machine *sm, const u8 *pmk,
int session_timeout, struct eapol_state_machine *eapol)
{
if (sm == NULL || sm->wpa != WPA_VERSION_WPA2)
return -1;
if (pmksa_cache_auth_add(sm->wpa_auth->pmksa, pmk, PMK_LEN,
sm->wpa_auth->addr, sm->addr, session_timeout,
eapol, sm->wpa_key_mgmt))
return 0;
return -1;
}
int wpa_auth_pmksa_add_preauth(struct wpa_authenticator *wpa_auth,
const u8 *pmk, size_t len, const u8 *sta_addr,
int session_timeout,
struct eapol_state_machine *eapol)
{
if (wpa_auth == NULL)
return -1;
if (pmksa_cache_auth_add(wpa_auth->pmksa, pmk, len, wpa_auth->addr,
sta_addr, session_timeout, eapol,
WPA_KEY_MGMT_IEEE8021X))
return 0;
return -1;
}
static struct wpa_group *
wpa_auth_add_group(struct wpa_authenticator *wpa_auth, int vlan_id)
{
struct wpa_group *group;
if (wpa_auth == NULL || wpa_auth->group == NULL)
return NULL;
wpa_printf(MSG_DEBUG, "WPA: Add group state machine for VLAN-ID %d",
vlan_id);
group = wpa_group_init(wpa_auth, vlan_id);
if (group == NULL)
return NULL;
group->next = wpa_auth->group->next;
wpa_auth->group->next = group;
return group;
}
int wpa_auth_sta_set_vlan(struct wpa_state_machine *sm, int vlan_id)
{
struct wpa_group *group;
if (sm == NULL || sm->wpa_auth == NULL)
return 0;
group = sm->wpa_auth->group;
while (group) {
if (group->vlan_id == vlan_id)
break;
group = group->next;
}
if (group == NULL) {
group = wpa_auth_add_group(sm->wpa_auth, vlan_id);
if (group == NULL)
return -1;
}
if (sm->group == group)
return 0;
wpa_printf(MSG_DEBUG, "WPA: Moving STA " MACSTR " to use group state "
"machine for VLAN ID %d", MAC2STR(sm->addr), vlan_id);
sm->group = group;
return 0;
}
#endif /* CONFIG_NATIVE_WINDOWS */